Spark Jaccard similarity computation by min hashing slow compared to trivial approach - scala

Given 2 huge list of values, I am trying to compute jaccard similarity between them in Spark using Scala.
Assume colHashed1 contains the first list of values and colHashed2 contains the second list.
Approach 1(trivial approach):
val jSimilarity = colHashed1.intersection(colHashed2).distinct.count/(colHashed1.union(colHashed2).distinct.count.toDouble)
Approach 2(using minHashing):
I have used the approach explained here.
import java.util.zip.CRC32
def getCRC32 (s : String) : Int =
{
val crc=new CRC32
crc.update(s.getBytes)
return crc.getValue.toInt & 0xffffffff
}
val maxShingleID = Math.pow(2,32)-1
def pickRandomCoeffs(kIn : Int) : Array[Int] =
{
var k = kIn
val randList = Array.fill(k){0}
while(k > 0)
{
// Get a random shingle ID.
var randIndex = (Math.random()*maxShingleID).toInt
// Ensure that each random number is unique.
while(randList.contains(randIndex))
{
randIndex = (Math.random()*maxShingleID).toInt
}
// Add the random number to the list.
k = k - 1
randList(k) = randIndex
}
return randList
}
val colHashed1 = list1Values.map(a => getCRC32(a))
val colHashed2 = list2Values.map(a => getCRC32(a))
val nextPrime = 4294967311L
val numHashes = 10
val coeffA = pickRandomCoeffs(numHashes)
val coeffB = pickRandomCoeffs(numHashes)
var signature1 = Array.fill(numHashes){0}
for (i <- 0 to numHashes-1)
{
// Evaluate the hash function.
val hashCodeRDD = colHashed1.map(ele => ((coeffA(i) * ele + coeffB(i)) % nextPrime))
// Track the lowest hash code seen.
signature1(i) = hashCodeRDD.min.toInt
}
var signature2 = Array.fill(numHashes){0}
for (i <- 0 to numHashes-1)
{
// Evaluate the hash function.
val hashCodeRDD = colHashed2.map(ele => ((coeffA(i) * ele + coeffB(i)) % nextPrime))
// Track the lowest hash code seen.
signature2(i) = hashCodeRDD.min.toInt
}
var count = 0
// Count the number of positions in the minhash signature which are equal.
for(k <- 0 to numHashes-1)
{
if(signature1(k) == signature2(k))
count = count + 1
}
val jSimilarity = count/numHashes.toDouble
Approach 1 seems to outperform Approach 2 in terms of time always. When I analyzed the code, min() function call on the RDD in Approach 2 takes significant time and that function is called many times depending upon how many hash functions are used.
The intersection and union operations used in Approach 1 seems to work faster compared to the repeated min() function calls.
I don't understand why minHashing does not help here. I expected minHashing to work faster compared to trivial approach. Is there anything I am doing wrong here?
Sample data can be viewed here

JaccardSimilarity with MinHash is not giving consistent results:
import java.util.zip.CRC32
object Jaccard {
def getCRC32(s: String): Int = {
val crc = new CRC32
crc.update(s.getBytes)
return crc.getValue.toInt & 0xffffffff
}
def pickRandomCoeffs(kIn: Int, maxShingleID: Double): Array[Int] = {
var k = kIn
val randList = Array.ofDim[Int](k)
while (k > 0) {
// Get a random shingle ID.
var randIndex = (Math.random() * maxShingleID).toInt
// Ensure that each random number is unique.
while (randList.contains(randIndex)) {
randIndex = (Math.random() * maxShingleID).toInt
}
// Add the random number to the list.
k = k - 1
randList(k) = randIndex
}
return randList
}
def approach2(list1Values: List[String], list2Values: List[String]) = {
val maxShingleID = Math.pow(2, 32) - 1
val colHashed1 = list1Values.map(a => getCRC32(a))
val colHashed2 = list2Values.map(a => getCRC32(a))
val nextPrime = 4294967311L
val numHashes = 10
val coeffA = pickRandomCoeffs(numHashes, maxShingleID)
val coeffB = pickRandomCoeffs(numHashes, maxShingleID)
val signature1 = for (i <- 0 until numHashes) yield {
val hashCodeRDD = colHashed1.map(ele => (coeffA(i) * ele + coeffB(i)) % nextPrime)
hashCodeRDD.min.toInt // Track the lowest hash code seen.
}
val signature2 = for (i <- 0 until numHashes) yield {
val hashCodeRDD = colHashed2.map(ele => (coeffA(i) * ele + coeffB(i)) % nextPrime)
hashCodeRDD.min.toInt // Track the lowest hash code seen
}
val count = (0 until numHashes)
.map(k => if (signature1(k) == signature2(k)) 1 else 0)
.fold(0)(_ + _)
val jSimilarity = count / numHashes.toDouble
jSimilarity
}
// def approach1(list1Values: List[String], list2Values: List[String]) = {
// val colHashed1 = list1Values.toSet
// val colHashed2 = list2Values.toSet
//
// val jSimilarity = colHashed1.intersection(colHashed2).distinct.count / (colHashed1.union(colHashed2).distinct.count.toDouble)
// jSimilarity
// }
def approach1(list1Values: List[String], list2Values: List[String]) = {
val colHashed1 = list1Values.toSet
val colHashed2 = list2Values.toSet
val jSimilarity = (colHashed1 & colHashed2).size / (colHashed1 ++ colHashed2).size.toDouble
jSimilarity
}
def main(args: Array[String]) {
val list1Values = List("a", "b", "c")
val list2Values = List("a", "b", "d")
for (i <- 0 until 5) {
println(s"Iteration ${i}")
println(s" - Approach 1: ${approach1(list1Values, list2Values)}")
println(s" - Approach 2: ${approach2(list1Values, list2Values)}")
}
}
}
OUTPUT:
Iteration 0
- Approach 1: 0.5
- Approach 2: 0.5
Iteration 1
- Approach 1: 0.5
- Approach 2: 0.5
Iteration 2
- Approach 1: 0.5
- Approach 2: 0.8
Iteration 3
- Approach 1: 0.5
- Approach 2: 0.8
Iteration 4
- Approach 1: 0.5
- Approach 2: 0.4
Why are you using it?

It seems to me that the overhead cost for minHashing approach just outweighs its functionality in Spark. Especially as numHashes increases.
Here are some observations I've found in your code:
First, while (randList.contains(randIndex)) this part will surely slow down your process as numHashes (which is by the way equal to the size of randList) increases.
Second, You can save some time if you rewrite this code:
var signature1 = Array.fill(numHashes){0}
for (i <- 0 to numHashes-1)
{
// Evaluate the hash function.
val hashCodeRDD = colHashed1.map(ele => ((coeffA(i) * ele + coeffB(i)) % nextPrime))
// Track the lowest hash code seen.
signature1(i) = hashCodeRDD.min.toInt
}
var signature2 = Array.fill(numHashes){0}
for (i <- 0 to numHashes-1)
{
// Evaluate the hash function.
val hashCodeRDD = colHashed2.map(ele => ((coeffA(i) * ele + coeffB(i)) % nextPrime))
// Track the lowest hash code seen.
signature2(i) = hashCodeRDD.min.toInt
}
var count = 0
// Count the number of positions in the minhash signature which are equal.
for(k <- 0 to numHashes-1)
{
if(signature1(k) == signature2(k))
count = count + 1
}
into
var count = 0
for (i <- 0 to numHashes - 1)
{
val hashCodeRDD1 = colHashed1.map(ele => ((coeffA(i) * ele + coeffB(i)) % nextPrime))
val hashCodeRDD2 = colHashed2.map(ele => ((coeffA(i) * ele + coeffB(i)) % nextPrime))
val sig1 = hashCodeRDD1.min.toInt
val sig2 = hashCodeRDD2.min.toInt
if (sig1 == sig2) { count = count + 1 }
}
This method simplifies the three loops into one. However, I am not sure if that would give a huge boost in computational time.
One other suggestion I have, assuming that the first approach still turns out to be much faster is to use the property of sets to modify the first approach:
val colHashed1_dist = colHashed1.distinct
val colHashed2_dist = colHashed2.distinct
val intersect_cnt = colHashed1_dist.intersection(colHashed2_dist).distinct.count
val jSimilarity = intersect_cnt/(colHashed1_dist.count + colHashed2_dist.count - intersect_cnt).toDouble
with that, instead of getting the union, you can just reuse the value of the intersection.

Actually, in LSH apporach you would calculate minHash only once for each of your documents and then compare two minHases for each possible pair of documents. And in case of trivial approach you would perform full comparison of documents for each possible pair of documents. Which is roughly N^2/2 number of comparisons. Hence extra cost of calculating minHashes is negligible for large enough number of documents.
You should actually compare the performance of the trivial approach:
val jSimilarity = colHashed1.intersection(colHashed2).distinct.count/(colHashed1.union(colHashed2).distinct.count.toDouble)
and performance of the Jaccard distance calculation (last lines in your code):
var count = 0
// Count the number of positions in the minhash signature which are equal.
for(k <- 0 to numHashes-1)
{
if(signature1(k) == signature2(k))
count = count + 1
}
val jSimilarity = count/numHashes.toDouble

Related

Scala for loop to calculate sum of powers

I am very new to Scala and am trying to create a loop that will calculate the sum of powers (1^1 + 2^2 + ... + 10^10) without using an exponent operator.
I discovered that 1^1 through 9^9 calculate correctly. But for some reason 10^10 evaluates to 1410065409 in my current code and messes up my final output of the sum. What is causing this mathematical error?
My current code is:
var i = 1
var ex = 1
var sum = 0
while (i <= 10)
{
for (j <- 1 to i)
{
ex = ex * i
}
sum += ex
ex = 1
i += 1
}
println(s"The sum is $sum")
Here's how it's done in Scala.
List.tabulate(10)(n => List.fill(n+1)(n.toLong+1).product).sum
//res0: Long = 10405071317
Another option you have, is to use Math.pow:
val result1 = 1.to(10).map(x => Math.pow(x, x)).sum
Please note that result1 is of type Double, and has the value 1.0405071317E10.
If you want to have it as long, you can do:
val result2 = 1.to(10).map(x => Math.pow(x, x).toLong).sum
Then result2 will have the value 10405071317.

Scala code slows down as array size increases

I have written a Scala Spark application that is implementation of iterative algorithm. Element wise operation have to be performed in each iteration on arrays. Initially size of all collection was 1000. For 1000 size arrays, code works fine and faster. Now size of arrays is 1 million and this code (part of application) is taking too long time, slowing down whole application. This code is used inside mapPartitionWithIndex of Spark RDD. Here is code.
def ESt(arr: Array[Double], arr1: Array[Double], frq: Double): Array[Double] = {
val newArr = new Array[Double](arr.length)
var i = 0
while (i < arr.length) {
newArr(i) = (arr(i) - arr1(i)) * frq
i += 1
}
newArr
}
def ES(arr: Array[Double], arr1: Array[Double], arr2: Array[Double]): Array[Double] = {
val newArr =new Array[Double](arr.length)
var i = 0
while (i < arr.length) {
newArr(i) = arr(i) + arr1(i) + arr2(i)
i += 1
}
newArr
}
Here is usage of above two functions to create an Array.
val dim = 1000000 // one million
val number : Double = math.random
val xr1 : Array[Double] = Array of size dim
val xr2 : Array[Double] = Array of size dim
val xbest : Array[Double] = Array of size dim
val randomArray : Array[Double] = Array.fill(dim)(math.random)
var result : Array[Double] = ES(randomArray, ESt(xbest, randomArray, number), ESt(xr1, xr2, number))
I have lot of cores in cluster where I executes this code. How can I speed-up this computation using Scala functional or parallel programming power or using any other technique?

scala: Loop through a file to read 20 bytes at a time and blank out bytes at 3rd position

I have a code snippet in java that loops through the file byte by byte and blanks out byte at 3rd position on every 20 bytes. This is done using for each loop.
logic:
for(byte b: raw){
if (pos is 3) b = 32;
if (i > 20) i = 0;
i++
}
Since I am learning scala, I would like to know if there is a better way of looping byte by byte in scala.
I have read into byte array as below in scala:
val result = IOUtils.toByteArray(new FileInputStream (new File(fileDir)))
Thanks.
Here is a diametrically opposite solution to that of Tzach Zohar:
def parallel(ba: Array[Byte], blockSize: Int = 2048): Unit = {
val n = ba.size
val numJobs = (n + blockSize - 1) / blockSize
(0 until numJobs).par.foreach { i =>
val startIdx = i * blockSize
val endIdx = n min ((i + 1) * blockSize)
var j = startIdx + ((3 - startIdx) % 20 + 20) % 20
while (j < endIdx) {
ba(j) = 32
j += 20
}
}
}
You see a lot of mutable variables, scary imperative while-loops, and some strange tricks with modular arithmetic. That's actually not idiomatic Scala at all. But the interesting thing about this solution is that it processes blocks of the byte array in parallel. I've compared the time needed by this solution to your naive solution, using various block sizes:
Naive: 38.196
Parallel( 16): 11.676000
Parallel( 32): 7.260000
Parallel( 64): 4.311000
Parallel( 128): 2.757000
Parallel( 256): 2.473000
Parallel( 512): 2.462000
Parallel(1024): 2.435000
Parallel(2048): 2.444000
Parallel(4096): 2.416000
Parallel(8192): 2.420000
At least in this not very thorough microbenchmark (1000 repetitions on 10MB array), the more-or-less efficiently implemented parallel version outperformed the for-loop in your question by factor 15x.
The question is now: What do you mean by "better"?
My proposal was slightly faster than your naive approach
#TzachZohar's functional solution could generalize better should the
code be moved on a cluster like Apache Spark.
I would usually prefer something closer to #TzachZohar's solution, because it's easier to read.
So, it depends on what you are optimizing for: performance? generality? readability? maintainability? For each notion of "better", you could get a different answer. I've tried to optimize for performance. #TzachZohar optimized for readability and maintainability. That lead to two rather different solutions.
Full code of the microbenchmark, just in case someone is interested:
val array = Array.ofDim[Byte](10000000)
def naive(ba: Array[Byte]): Unit = {
var pos = 0
for (i <- 0 until ba.size) {
if (pos == 3) ba(i) = 32
pos += 1
if (pos == 20) pos = 0
}
}
def parallel(ba: Array[Byte], blockSize: Int): Unit = {
val n = ba.size
val numJobs = (n + blockSize - 1) / blockSize
(0 until numJobs).par.foreach { i =>
val startIdx = i * blockSize
val endIdx = n min ((i + 1) * blockSize)
var j = startIdx + ((3 - startIdx) % 20 + 20) % 20
while (j < endIdx) {
ba(j) = 32
j += 20
}
}
}
def measureTime[U](repeats: Long)(block: => U): Double = {
val start = System.currentTimeMillis
var iteration = 0
while (iteration < repeats) {
iteration += 1
block
}
val end = System.currentTimeMillis
(end - start).toDouble / repeats
}
println("Basic sanity check (did I get the modulo arithmetic right?):")
{
val testArray = Array.ofDim[Byte](50)
naive(testArray)
println(testArray.mkString("[", ",", "]"))
}
{
for (blockSize <- List(3, 7, 13, 16, 17, 32)) {
val testArray = Array.ofDim[Byte](50)
parallel(testArray, blockSize)
println(testArray.mkString("[", ",", "]"))
}
}
val Reps = 1000
val naiveTime = measureTime(Reps)(naive(array))
println("Naive: " + naiveTime)
for (blockSize <- List(16,32,64,128,256,512,1024,2048,4096,8192)) {
val parallelTime = measureTime(Reps)(parallel(array, blockSize))
println("Parallel(%4d): %f".format(blockSize, parallelTime))
}
Here's one way to do this:
val updated = result.grouped(20).flatMap { arr => arr.update(3, 32); arr }

Spark Logistic regression and metrics

I want to run logistic regression 100 times with random splitting into test and training. I want to then save the performance metrics for individual runs and then later use them for gaining insight into the performance.
for (index <- 1 to 100) {
val splits = training_data.randomSplit(Array(0.90, 0.10), seed = index)
val training = splits(0).cache()
val test = splits(1)
logrmodel = train_LogisticRegression_model(training)
performLogisticRegressionRuns(logrmodel, test, index)
}
spark.stop()
}
def performLogisticRegressionRuns(model: LogisticRegressionModel, test: RDD[LabeledPoint], iterationcount: Int) {
private val sb = StringBuilder.newBuilder
// Compute raw scores on the test set. Once I cle
model.clearThreshold()
val predictionAndLabels = test.map { case LabeledPoint(label, features) =>
val prediction = model.predict(features)
(prediction, label)
}
val bcmetrics = new BinaryClassificationMetrics(predictionAndLabels)
// I am showing two sample metrics, but I am collecting more including recall, area under roc, f1 score etc....
val precision = bcmetrics.precisionByThreshold()
precision.foreach { case (t, p) =>
// If threshold is 0.5 as what we want, then get the precision and append it to the string. Idea is if score is <0.5 class 0, else class 1.
if (t == 0.5) {
println(s"Threshold is: $t, Precision is: $p")
sb ++= p.toString() + "\t"
}
}
val auROC = bcmetrics.areaUnderROC
sb ++= iteration + auPRC.toString() + "\t"
I want to save the performance results of each iteration in separate file. I tried this, but it does not work, any help with this will be great
val data = spark.parallelize(sb)
val filename = "logreg-metrics" + iterationcount.toString() + ".txt"
data.saveAsTextFile(filename)
}
I was able to resolve this, I did the following. I converted the String to a list.
val data = spark.parallelize(List(sb))
val filename = "logreg-metrics" + iterationcount.toString() + ".txt"
data.saveAsTextFile(filename)

Large matrix operations: Multiplication in Scala/Apache Spark

I need to multiply two large matrices, X and Y. Typically X has ~500K rows and ~18K columns and Y has ~18K rows and ~18K columns. The matrix X is expected to be sparse and the matrix Y is expected to be sparse/dense. What is the ideal way of performing this multiplication in Scala/Apache Spark?
I got some code for you. It represents a matrix as an array of column vectors (which means each entry in the array is a column, not a row). It takes about 0.7s to multiply two 1000*1000 matrices. 11 minutes for two 10,000 * 10,000 matrices. 1.5 hours for 20,000 * 20,000 and 30 hours for (500k*18k) times (18k*18k). But if you run it in parallel (by using the code that's commented out) it should run about 2 to 3 times faster (on a 4 core cpu). But remember that the number of columns in the first matrix always has to be the same as the number of rows in the second.
class Matrix(val columnVectors: Array[Array[Double]]) {
val columns = columnVectors.size
val rows = columnVectors.head.size
def *(v: Array[Double]): Array[Double] = {
val newValues = Array.ofDim[Double](rows)
var col = 0
while(col < columns) {
val n = v(col)
val column = columnVectors(col)
var row = 0
while(row < newValues.size) {
newValues(row) += column(row) * n
row += 1
}
col += 1
}
newValues
}
def *(other: Matrix): Matrix = {
//do the calculation on only one cpu
new Matrix(other.columnVectors.map(col => this * col))
//do the calculation in parallel on all available cpus
//new Matrix(other.columnVectors.par.map(col => this * col).toArray)
}
override def toString = {
columnVectors.transpose.map(_.mkString(", ")).mkString("\n")
}
}
edit:
ok, here is a better version. I now store the row vectors in the matrix instead of the column vectors. That makes it easier to optimize the multiplication for the case where the first matrix is sparse.
Also I added a lazy version of the matrix multiplication using iterators. Since the first matrix is 500k * 18k = 9 billion numbers, such a lazy version will allow you to do that multiplication without requiring much ram. You just have to create an Iterator that can read the rows lazily e.g. from a data bank and then write the rows from the resulting iterator back.
import scala.collection.Iterator
import scala.util.{Random => rand}
def time[T](descr: String)(f: => T): T = {
val start = System.nanoTime
val r = f
val end = System.nanoTime
val time = (end - start)/1e6
println(descr + ": time = " + time + "ms")
r
}
object Matrix {
def mulLazy(m1: Iterator[Array[Double]], m2: Matrix): Iterator[Array[Double]] = {
m1.grouped(8).map { group =>
group.par.map(m2.mulRow).toIterator
}.flatten
}
}
class Matrix(val rowVectors: Array[Array[Double]]) {
val columns = rowVectors.head.size
val rows = rowVectors.size
private def mulRow(otherRow: Array[Double]): Array[Double] = {
val rowVectors = this.rowVectors
val result = Array.ofDim[Double](columns)
var i = 0
while(i < otherRow.size) {
val value = otherRow(i)
if(value != 0) { //optimization for sparse matrix
val row = rowVectors(i)
var col = 0
while(col < result.size) {
result(col) += value * row(col)
col += 1
}
}
i += 1
}
result
}
def *(other: Matrix): Matrix = {
new Matrix(rowVectors.par.map(other.mulRow).toArray)
}
def equals(other: Matrix): Boolean = {
java.util.Arrays.deepEquals(this.rowVectors.asInstanceOf[Array[Object]], other.rowVectors.asInstanceOf[Array[Object]])
}
override def equals(other: Any): Boolean = {
if(other.isInstanceOf[Matrix]) equals(other.asInstanceOf[Matrix]) else false
}
override def toString = {
rowVectors.map(_.mkString(", ")).mkString("\n")
}
}
def randMatrix(rows: Int, columns: Int): Matrix = {
new Matrix((1 to rows).map(_ => Array.fill(columns)(rand.nextDouble * 100)).toArray)
}
def sparseRandMatrix(rows: Int, columns: Int, ratio: Double): Matrix = {
new Matrix((1 to rows).map(_ => Array.fill(columns)(if(rand.nextDouble > ratio) 0 else rand.nextDouble * 100)).toArray)
}
val N = 2000
val m1 = sparseRandMatrix(N, N, 0.1) // only 10% of the numbers will be different from 0
val m2 = randMatrix(N, N)
val m3 = m1.rowVectors.toIterator
val m12 = time("m1 * m2")(m1 * m2)
val m32 = time("m3 * m2")(Matrix.mulLazy(m3, m2)) //doesn't take much time because the matrix multiplication is lazy
println(m32)
println("m12 == m32 = " + (new Matrix(m32.toArray) == m12))