Different loss functions for backpropagation - neural-network

I came across some different error calculation functions for backpropagation:
Squared error function from http://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
or a nice explanation for the derivation for the BP loss function
Error = Output(i) * (1 - Output(i)) * (Target(i) - Output(i))
Now, I'm wondering how many more there are, and what difference in effect it has on training?
Also, since I understand that the second example uses the derivative of the activation function used by the layer, does the first one also does this in a way? And would it be true for any loss function (if there are more)?
Finally, how to know which one to use, and when?

This was a very broad question, but I can shed some light on the error / cost function part.
Cost functions
There are many different cost functions that can be applied when working with neural networks. There are no neural network specific cost functions. The most common cost function in NN is probably the Mean Squared Error (MSE) and the Cross Entropy Cost function. The latter cost function is often the most appropriate when working with logistic or softmax output layers. The MSE cost function on the other hand, is convenient since it does not require the output values to be in the range [0, 1].
The different cost functions excerts different convergence properties and has their own pros and cons. You'll have to read up on those that are interesting to you.
List of cost functions
Danielle Ensign has compiled a short, nice list of cost functions over at CrossValidated.
Sidenote
You have confused the derivative of squared error function. The equation you've defined as the derivative of the error function, is actually the derivative of the error functions times the derivative of your output layer activation function. This multiplication calculates the delta of the output layer.
The squared error function and its derivative are defined as:
While the sigmoid activation function and its derivative are defined as:
The delta of the output layer is defined as:
And this is true for all cost functions.

Related

How to provide custom cost function for robustfit or fitlm in MATLAB

If I know right- for trying to fit a model; some kind of iterative algorithm is used where the goal is to minimize a cost function (e.g. OLS, MSE, RMSE, MMSE).
I know the robustfit() method do the fitting for a regression model using OLS (Ordinary least squares) cost function and then performs an additional weighted regression to provide the final model. Also, I think fitlm() uses RMSE as the cost function.
My first query is: in Matlab, whether the cost function and weight function are same or not.
Also, how to provide my custom cost function (e.g. MSE) while letting MATLAB do the fitting?
I came to know that, robustfit() can take additional/custom weight function. But again I am confused will that be treated as cost function? Or I need to use some other kind of argument for providing my custom cost function?
Just like you said, the cost function is the function you want to minimize to find the correct coefficients of your predictor. For example, a cost function could be cost(a) = sqrt(mean((a).^2));, a usually being y - y_est.
In another side, the weight function, regarding to Robust Regression, is a way to give less influence or to remove accidental measurements for the algorithm. If you look at the shape of a weight function:
You will see that the further residuals are from zero, the less they are taken in account (sometimes even completely removed) . This is a way to avoid mistakes due to outliers.
The way the function estimates error is not open to custom, only the weight function is.

Activation function for output layer for regression models in Neural Networks

I have been experimenting with neural networks these days. I have come across a general question regarding the activation function to use. This might be a well known fact to but I couldn't understand properly. A lot of the examples and papers I have seen are working on classification problems and they either use sigmoid (in binary case) or softmax (in multi-class case) as the activation function in the out put layer and it makes sense. But I haven't seen any activation function used in the output layer of a regression model.
So my question is that is it by choice we don't use any activation function in the output layer of a regression model as we don't want the activation function to limit or put restrictions on the value. The output value can be any number and as big as thousands so the activation function like sigmoid to tanh won't make sense. Or is there any other reason? Or we actually can use some activation function which are made for these kind of problems?
for linear regression type of problem, you can simply create the Output layer without any activation function as we are interested in numerical values without any transformation.
more info :
https://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/
for classification :
You can use sigmoid, tanh, Softmax etc.
If you have, say, a Sigmoid as an activation function in output layer of your NN you will never get any value less than 0 and greater than 1.
Basically if the data your're trying to predict are distributed within that range you might approach with a Sigmoid function and test if your prediction performs well on your training set.
Even more general, when predict a data you should come up with the function that represents your data in the most effective way.
Hence if your real data does not fit Sigmoid function well you have to think of any other function (e.g. some polynomial function, or periodic function or any other or a combination of them) but you also should always care of how easily you will build your cost function and evaluate derivatives.
Just use a linear activation function without limiting the output value range unless you have some reasonable assumption about it.

Is non-linearity added to neural networks because of its derivatives?

I have question:
I always assumed that non-linearity was applied to a neural-network in order to calculate the minimum of a error surface.
If the function is f(x)=mx+b the derivative is always f'(x) = 1.
Is this one of the reasons why non-linearity ( exempli gratia through sigmoid functions which derivative is f'(x)=f(x)*(1-f(x))) is applied?
Thank you very much.
The neural network is a model of your problem, making predictions
for inputs. The loss function is a measure of the accuracy of
predictions with respect to the observed results.
"Linearity" typically refers to the model. A linear model is a very
simple one: many interesting problems can be approximated by linear
functions, but often you need a more sophisticated model.
Since the sequential composition of linear functions is still linear,
the expressiveness of deep networks derives from the fact of inserting
non linear activation functions modulating the output of artificial
neurons (approximating a thresholding filter). These non linear functions
must be derivable to work with the backpropagation algorithm.
Indipendently from the model, the loss function can be "linear" (L1),
such as the sum of absolute deviations, or non linear, such as
mean squared residuals (L2) or other different loss functions. Again,
the loss function must be derivable too.
See for instance this lecture by Hinton et al.
for the discussion of a simple linear model with a L2 loss function
(then enriched with a sigmoid activation function).

Linear vs nonlinear neural network?

I'm new to machine learning and neural networks. I know how to build a nonlinear classification model, but my current problem has a continuous output. I've been searching for information on neural network regression, but all I encounter is information on linear regression - nothing about nonlinear cases. Which is odd, because why would someone use neural networks to solve a simple linear regression anyway? Isn't that like killing a fly with a nuclear bomb?
So my question is this: what makes a neural network nonlinear? (Hidden layers? Nonlinear activation function?) Or do I have a completely wrong understanding of the word "linear" - can a linear regression NN accurately model datasets that are more complex than y=aX+b? Is the word "linear" used just as the opposite of "logistic"?
(I'm planning to use TensorFlow, but the TensorFlow Linear Model Tutorial uses a binary classification problem as an example, so that doesn't help me either.)
For starters, a neural network can model any function (not just linear functions) Have a look at this - http://neuralnetworksanddeeplearning.com/chap4.html.
A Neural Network has got non linear activation layers which is what gives the Neural Network a non linear element.
The function for relating the input and the output is decided by the neural network and the amount of training it gets. If you supply two variables having a linear relationship, then your network will learn this as long as you don't overfit. Similarly, a complex enough neural network can learn any function.
WARNING: I do not advocate the use of linear activation functions only, especially in simple feed forward architectures.
Okay, I think I need to take some time and rewrite this answer explicitly because many people are misinterpreting the point I am trying to make.
First let me point out that we can talk about linearity in parameters or linearity in the variables.
The activation function is NOT necessarily what makes a neural network non-linear (technically speaking).
For example, notice that the following regression predicted values are considered linear predictions, despite non-linear transformations of the inputs because the output constitutes a linear combination of the parameters (although this model is non-linear in its variables):
Now for simplicity, let us consider a single neuron, single layer neural network:
If the transfer function is linear then:
As you have already probably noticed, this is a linear regression. Even if we were to add multiple inputs and neurons, each with a linear activation function, we would now only have an ensemble of regressions (all linear in their parameters and therefore this simple neural network is linear):
Now going back to (3), let's add two layers, so that we have a neural network with 3 layers, one neuron each (both with linear activation functions):
(first layer)
(second layer)
Now notice:
Reduces to:
Where and
Which means that our two layered network (each with a single neuron) is not linear in its parameters despite every activation function in the network being linear; however, it is still linear in the variables. Thus, once training has finished the model will be linear in both variables and parameters. Both of these are important because you cannot replicate this simple two layered network with a single regression and still capture all the effects of the model. Further, let me state clearly: if you use a model with multiple layers there is no guarantee that the output will be non-linear in it's variables (if you use a simple MLP perceptron and line activation functions your picture is still going to be a line).
That being said, let's take a look at the following statement from #Pawu regarding this answer:
The answer is very misleading and makes it sound, that we can learn non-linear relationships using only linear transformations, which is simply not true. When we back-propagate, we take the derivative of a single weight w1 and fix everything else. Now as mentioned above, we are still moving on a linear function.
While you could argue that what #Pawu is saying is technically true, I think they are implying:
The answer is very misleading and makes it sound, that we can learn non-linear relationships using only linear activation functions, which is simply not true.
I would argue that this modified statement is wrong and can easily be demonstrated incorrect. There is an implicit assumption being made about the architecture of the model. It is true that if you restrict yourself to using certain network architectures that you cannot introduce non-linearities without activation functions, but that is a arbitrary restriction and does not generalize to all network models.
Let me make this concrete. First take a simple xor problem. This is a basic classification problem where you are attempting to establish a boundary between data points in a configuration like so:
The kicker about this problem is that it is not linearly separable, meaning no single straight line will be able to perfectly classify. Now if you read anywhere on the internet I am sure they will say that this problem cannot be solved using only linear activation functions using a neural network (notice nothing is said about the architecture). This statement is only true in an extremely limited context and wrong generally.
Allow me to demonstrate. Below is a very simple hand written neural network. This network takes randomly generated weights between -1 and 1, an "xor_network" function which defines the architecture (notice no sigmoid, hardlims, etc. only linear transformations of the form mX or MX + B), and trains using standard backward propagation:
#%% Packages
import numpy as np
#%% Data
data = np.array([[0, 0, 0],[0, 1, 1],[1, 0, 1],[1, 1, 0]])
np.random.shuffle(data)
train_data = data[:,:2]
target_data = data[:,2]
#%% XOR architecture
class XOR_class():
def __init__(self, train_data, target_data, alpha=.1, epochs=10000):
self.train_data = train_data
self.target_data = target_data
self.alpha = alpha
self.epochs = epochs
#Random weights
self.W0 = np.random.uniform(low=-1, high=1, size=(2)).T
self.b0 = np.random.uniform(low=-1, high=1, size=(1))
self.W2 = np.random.uniform(low=-1, high=1, size=(2)).T
self.b2 = np.random.uniform(low=-1, high=1, size=(1))
#xor network (linear transfer functions only)
def xor_network(self, X0):
n0 = np.dot(X0, self.W0) + self.b0
X1 = n0*X0
a = np.dot(X1, self.W2) + self.b2
return(a, X1)
#Training the xor network
def train(self):
for epoch in range(self.epochs):
for i in range(len(self.train_data)):
# Forward Propagation:
X0 = self.train_data[i]
a, X1 = self.xor_network(X0)
# Backward Propagation:
e = self.target_data[i] - a
s_2 = -2*e
# Update Weights:
self.W0 = self.W0 - (self.alpha*s_2*X0)
self.b0 = self.b0 - (self.alpha*s_2)
self.W2 = self.W2 - (self.alpha*s_2*X1)
self.b2 = self.b2 - (self.alpha*s_2)
#Restart training if we get lost in the parameter space.
if np.isnan(a) or (a > 1) or (a < -1):
print('Bad initialization, reinitializing.')
self.W0 = np.random.uniform(low=-1, high=1, size=(2)).T
self.b0 = np.random.uniform(low=-1, high=1, size=(1))
self.W2 = np.random.uniform(low=-1, high=1, size=(2)).T
self.b2 = np.random.uniform(low=-1, high=1, size=(1))
self.train()
#Predicting using the trained weights.
def predict(self, test_data):
for i in train_data:
a, X1 = self.xor_network(i)
#I cut off decimals past 12 for convienience, not necessary.
print(f'input: {i} - output: {np.round(a, 12)}')
Now let's take a look at the output:
#%% Execution
xor = XOR_class(train_data, target_data)
xor.train()
np.random.shuffle(data)
test_data = data[:,:2]
xor.predict(test_data)
input: [1 0] - output: [1.]
input: [0 0] - output: [0.]
input: [0 1] - output: [1.]
input: [1 1] - output: [0.]
And what do you know, I guess we can learn non-linear relationships using only linear activation functions and multiple layers (that's right classification with pure line activation functions, no sigmoid needed). . .
The only catch here is that I cut off all decimals past 12, but let's be honest 7.3 X 10^-16 is basically 0.
Now to be fair I am doing a little trick, where I am using the network connections to get the non-linear result, but that's the whole point I am trying to drive home: THE MAGIC OF NON-LINEARITY FOR NEURAL NETWORKS IS IN THE LAYERS, NOT JUST THE ACTIVATION FUNCTIONS.
Thus the answer to your question, "what makes a neural network non-linear" is: non-linearity in the parameters or, obviously, non-linearity in the variables.
This non-linearity in the parameters/variables comes about two ways: 1) having more than one layer with neurons in your network (as exhibited above), or 2) having activation functions that result in weight non-linearities.
For an example on non-linearity coming about through activation functions, suppose our input space, weights, and biases are all constrained such that they are all strictly positive (for simplicity). Now using (2) (single layer, single neuron) and the activation function , we have the following:
Which Reduces to:
Where , , and
Now, ignoring what issues this neural network has, it should be clear, that at the very least, it is non-linear in the parameters and variables and that non-linearity has been introduced solely by choice of the activation function.
Finally, yes neural networks can model complex data structures that cannot be modeled by using linear models (see xor example above).
EDIT:
As pointed out by #hH1sG0n3, non-linearity in the parameters does not follow directly from many common activation functions (e.g. sigmoid). This is not to say that common activation functions do not make neural networks nonlinear (because they are non-linear in the variables), but that the non-linearity introduced by them is degenerate without parameter non-linearity. For example, a single layered MLP with sigmoid activation functions will produce outputs that are non-linear in the variables in that the output is not proportional to the input, but in reality this is just an array of Generalized Linear Models. This should be especially obvious if we were to transform the targets by the appropriate link function, where now the activation functions would be linear. Now this is not to say that activation functions don't play an important role in the non-linearity of neural networks (clearly they do), but that their role is more to alter/expand the solution space. Said differently, non-linearities in the parameters (usually expressed through many layers/connections) are necessary for non-degenerate solutions that go beyond regression. When we have a model with non-linearity in the parameters we have a whole different beast than regression.
At the end of the day all I want to do with this post is point out that the "magic" of neural networks is also in the layers and to dispel the ubiquitous myth that a multilayered neural network with linear activation functions is always just a bunch of linear regressions.
When it comes to nonlinear regression, this is referring to how the weights affect the output. If a function is not linear with respect to the weights, then your problem is a nonlinear regression problem. So for example, let's look at a Feedforward Neural Network with one hidden layer where the activation functions in the hidden layer are some function and the output layer has linear activation functions. Given this, the mathematical representation can be:
where we assume can operator on scalars and vectors with this notation to make it easy. , , , and are the weight you are aiming to estimate with the regression. If this was linear regression, would equal z, because that would make y linearly dependent on & . But if is nonlinear, say like , then now y is nonlinearly dependent on the weights .
Now provided you understand all that, I am surprised you haven't seen discussion of the nonlinear case because that's pretty much all people talk about in textbooks and research. The use of things like stochastic gradient descent, Nonlinear Conjugate Gradient, RProp, and other methods are to help find local minima (and hopefully good local minima) for these nonlinear regression problems, even though a global optimum is not typically guaranteed.
Any non-linearity from the input to output makes the network non-linear. In the way we usually think about and implement neural networks, those non-linearities come from activation functions.
If we are trying to fit non-linear data and only have linear activation functions, our best approximation to the non-linear data will be linear since that's all we can compute. You can see an example of a neural network trying to fit non-linear data with only linear activation functions here.
However, if we change the linear activation function to something non-linear like ReLu, then we can see a better non-linear fitting of the data. You can see that here.
I do not have enough reputation to comment on itwasthekix post, but I want to share my insight.
Someone asked in the comments whether equation 8 was linear, and the
answer was, that if w1 were to be varied when all else is constant
we would move up and down a non-linear function. This is not true.
When we vary w1, we essentially only change the output of z1 = (w1*p + b1). Since z1 is linearly transformed later, we will still
move an a linear function. If we were to fix everything except w1
AND w2, then we would move on a non-linear function.
If a multi-layer ANN is non-linear in parameters, because we have a
multiplication of parameters. That does not mean it can learn non-linear relationships.
The answer is very misleading and makes it sound, that we can
learn non-linear relationships using only linear transformations,
which is simply not true. When we back-propagate, we take the derivative of a single weight w1 and fix everything else. Now as mentioned above, we are still moving on a linear function.
If we take the gradient of w1*w2 and perform gradient descent, we only know the joint gradient, there is no way to determine the influence of the separate parameters without fixing one of them. And if we fix one, we move on a linear function.
If we add an (non-linear) activation function, we linearly transform a non-linear output enabling us to learn non-linear relationships, since we do not move on a linear function anymore.
Lets look at the case z = w2 * g(w1 * p + b1) + b2 assuming g is a non-linear activation function. Then if we fix everything and vary w1, we will move on a non-linear function, since w1 * p + b1 is transformed by g.
Non-linearity means different things in communities of regression analysis and neural network machine learning.
In regression analysis, when we say a fitting model is nonlinear, we mean that the model is nonlinear in terms of its parameters (not in terms of the independent variables).
A multiple-layer neural network is usually nonlinear in terms of the weights even the activation function is linear. This is simple to see because the information propagating in the network corresponds to function composition: f3(f2(f1())), which generally gives nonlinear functions of weights. Therefore, in terms of regression analysis, all neural networks are nonlinear models.
However in the community of neural network, people talk about the linearity in terms of input variables, rather than the weights/biases. Therefore, they define a neutral network with linear activation functions as linear and that with nonlinear activation function as nonlinear.
I had the same struggle, most online courses use ANNs for classification, but you never actually solve a regression problem with them in the courses.
What does make an ANN non-linear? The activation function.
Even if you have an ANN with thousands of perceptrons and hidden units, if all the activations are linear (or not activated at all) you are just training a plain linear regression.
But be careful, some activations functions (like sigmoid), have a range of values that act as a linear function and you may get stuck with a linear model even with non-linear activations.
How to predict continuous output with an ANN? The same way as when you classify.
It is the same problem, you just backpropagate the error (label - prediction) and update the weights. But don't forget to CHANGE THE ACTIVATION FUNCTION of the output layer to a continuous function (maybe ReLu if all labels are positive or don't activate the output at all), the intermediate hidden layers can be activated however you wish.
For small regression problems with ANNs you may need to start with a veeeeeery small learning rate since there will be lots of variance since the error will be "unbounded" at first.
Hope this helps :)
I don't want to be impolite, but the current answers are all related to nonlinear ND-polynomials resulting from linear activation functions. That simply doesn't make sense in terms of this question.
I get the point because you will have a polynomial as the objective function to minimize with coefficients that are products of layer coefficients and a product is nonlinear. Anyway, such a system will never be able to converge and doesn't make sense at all without any extra constraints.
The described system is not only completely unnecessarily nonlinear, but also ill-posed. Don't argue about stuff that leads ad absurdum. The original question actually completely nailed it.
Build a "linear neural network" with layers and try to use it as usual... then you will realise that this goes nowhere and you wasted your time.
So unless there is good reasons to believe this kind of ill-posed stuff has been handled I would never ever consider using a linear activation function. If you have extra constraints this might make sense. If you use stochastic gradient descent then you will at least skip some bad properties of it.
That the objective function is nonlinear in its parameters gives an impression that is wrong and bogus. And if the writer would have known about optimisation problems connected to terms with a product of coefficients he would have never written anything like this.
Any objective function can be made nonlinear. If you just replace one linear coefficient with a product of two coefficients. But that is nonsense because you can never determine those coefficients. NEVER. There are infinitely many solutions! And that doesn't even depend on the amount of data.
Because the activation is w*x, which is linear operation, so you need to have extra elements to make it non-linear.

In Neural network prediction(not classification), What Cost function shall i use?

Would you please provide me with some cost function that i can use in Neural Network back propagation prediction.
I have a prediction to be done in backpropagation, but i dont know if i can use any cost function.
Are cost function dependent on the activation function that we use?
If i use sin(x) as activation function then what will be the cost function?
1) In the course Machine Learning on Cursera, Andrew Ng provides this cost function: J(theta) = -1/m*( y*log(h(X*theta)) + (1-y)*log(1-h(X*theta)) ),
where log is a natural logarithm, h(X*theta) is output from NN. Apparently, this comes from Kullback–Leibler divergence and Cross-entropy.
2) The general idea is that your cost function is convex and classifier via optimization function finds one global minimum. If you use the above equation for classification such that your ys are 0 or 1, this function will be convex.
As a side note, the cost function J(theta) = 1/2*( h(x) - y )^2 is not convex when you use NN for classification.
3) Yes, especially for gradient calculation whose form is different depending on an activation function.
4) First of all why would you invent the wheel if it's already invented?
It's tricky question but I can give some clues. Your Cost function has to
give ideally 0 when output is exactly as it supposed to be:
h(x)=1 given x and y is 1
h(x)=0 given x and y is 0
The cost function has to give you any huge number otherwise, e.g. h(x)=0 when y=1 etc.
The cost function has to be convex.
Taking into account this features, you would have to work out the Cost Function. Besides, it looks like if you used sin(x), you would probably have to limit your argument X*theta to -pi ... pi.
Actually, ZikO, you should check the coursera materials again. The first cost function is still non-convex. Perhaps you are confusing neural networks with logistic regression. In the latter, using the entropic cost-function does indeed make the problem convex, whereas ordinary least squares does not. In neural networks, both cost functions are non-convex. According to Prof. Ng, however, this is not a big problem for neural networks.