What did "share nothing" mode real mean? - amazon-redshift

We called Greenplum,Redshift MPP or share nothing.
but i really dont understand why?
if it mean during a mutil-level join query,one host are computing all the time,no hosts exchange data each other?,there is no shuffle?
and or other situation.
whats the crux means of "share nothing"?

Shared nothing means that no two servers share the same data (aside from mirrors for high availability). A simple example would be a two node cluster where the data is distributed by gender_code. Node1 would have all of the males and node2 would have all of the females.
In the real world, you have way more nodes than just two so you distribute the data by something like an ID column. This gives you an even distribution of data across all of the nodes.
As you can probably guess, the optimizer has to be pretty smart to reduce the amount of data movement needed to execute a query. It also needs to slice the query into multiple parts so that it can execute the multiple slices of the query at once. Greenplum has been around for over 10 years and has a mature optimizer which can execute a wide variety of queries pretty well.

"Shared Nothing" is a description of what resources are shared between the processes running in parallel. So you may have shared memory approaches running on a single host, shared storage between multiple hosts or self contained systems with their own processing, RAM and storage. A deployment based a a few of these self contained systems would be described as "shared nothing".
In a shared-nothing system each node will store a subset of the data. Query planners in these systems try to do as much work as possible on the same host the data is stored on and move or shuffle as little data as possible (on Greenplum systems these steps in the query plan are called motions).

We call MPP 'Shared Nothing' as a way to compare Greenplum to something with a 'Shared Everything' architecture like Oracle RAC which also has multiple servers in a cluster but they all connect back to the same set of datafiles.

Related

GridFS: what it gives us

I'm reading "Seven Databases in Seven Weeks". Could you please explain me the text below:
One downside of a distributed system can be the lack of a single
coherent filesystem. Say you operate a website where users can upload
images of themselves. If you run several web servers on several
different nodes, you must manually replicate the uploaded image to
each web server’s disk or create some alternative central system.
Mongo handles this scenario by its own distributed filesystem called
GridFS.
Why do you need replicate manually uploaded images? Does they mean some of the servers will have linux and some of them Windows?
Do all replicated data storages tend to implement own filesystem?
On the need for data distribution and its intricacies
Let us dissect the example in a bit more detail. Say you have a web application where people can upload images. You fire up your server, save the images to the local machine in /home/server/app/uploads, the users use the application. So far, so good.
Now, your application becomes the next big thing, you have tens of thousands of concurrent users and your single server simply can not handle that load any more. Luckily, aside from the fact that you store the images in the local file system, you implemented the application in a way that you could easily put up another instance and distribute the load between them. But now here comes the problem: the second instance of your application would not have access to the images stored on the first instance – bad thing.
There are various ways to overcome that. Let us take NFS as an example. Now your second instance can access the images, and even store new ones, but that puts all the images on one machine, which sooner or later will run out of disk space.
Scaling storage capacity can easily become a very expensive part of an application. And this is where GridFS comes to help. It uses the rather easy means of MongoDB to distribute data across many machines, a process which is called sharding. Basically, it works like this: Instead of accessing the local filesystem, you access GridFS (and the contained files within) via the MongoDB database driver.
As for the OS: Usually, I would avoid mixing different OSes within a deployment, if at all possible. Nowadays, there is little to no reason for the average project to do so. I assume you are referring to the "different nodes" part of that text. This only refers to the fact that you have multiple machines involved. But they perfectly can run the same OS.
Sharding vs. replication
Note The following is vastly simplified, because going into details would well exceed the scope of one or more books.
The excerpt you quoted mixes two concepts a bit and is not clear enough on how GridFS works.
Lets first make the two involved concepts a bit more clear.
Replication is roughly comparable to a RAID1: The data is stored on two or more machines, and each machine holds all data.
Sharding (also known as "data partitioning") is roughly comparable to a RAID0: Each machine only holds a subset of the data, albeit you can access the whole data set (files in this case) transparently and the distributed storage system takes care of finding the data you requested (and decides where to store the data when you save a file)
Now, MongoDB allows you to have a mixed form, roughly comparable to RAID10: The data is distributed ("partitioned" or "sharded") between two or more shards, but each shard may (and almost always should) consist of a replica set, which is an uneven number of MongoDB instances which all hold the same data. This mixed form is called a "sharded cluster with a replication factor of X", where X denotes the non-hidden members per replica set.
The advantage of a sharded cluster is that there is no single point of failure any more:
Depending on your replication factor, one or more replica set members can fail, and the cluster is still working
There are servers which hold the metadata (which part of the data is stored on which shard, for example). Those are called config servers. As of MongoDB version 3.0.x (iirc), they form a replica set themselves – not much of a problem if a node fails.
You access a sharded cluster via a the mongos sharded cluster query router of which you usually have one per instance of your application (and most often on the same server as your application instance). But: most drivers can be given multiple mongos instances to connect to. So if one of those mongos instances fails, the driver will happily use the next one you configured.
Another advantage is that in case you need to add additional storage or have more IOPS than your current system can handle, you can add another shard: MongoDB will take care of distributing the existing data between the old shards and the new shard automagically. The details on how this is done are covered in the introduction to Sharding in the MongoDB docs.
The third advantage – and the one that has the most impact, imho – is that you can distribute (and replicate) data on relatively cheap commodity hardware, whereas most other technologies offering the benefits of GridFS on a sharded cluster require you to have specialized and expensive hardware.
A disadvantage is of course that this setup only is feasible if you have a lot of data, since many machines are necessary to set up a sharded cluster:
At least 3 config servers
At least a single shard, which should consist of a replica set. The minimal setup would be two data bearing nodes plus an arbiter
But: in order to use GridFS in general, you do not even need a replica set ;).
To stay within our above example: Both instances of your application could well access the same MongoDB instance holding a GridFS.
Do all replicated data storages tend to implement own filesystem?
Replicated? Not necessarily. There is DRBD for example, which could be described as "RAID1 over ethernet".
Assuming we have the same mixup of concepts here as we had above: Distributed file systems by their very definition implement a file system.
In this case,IMHO, author was stating that each web server has own disk storage, not shared with others - having that - upload path could be /home/server/app/uploads and as it is part of server filesystem is not shared at all as a kind of security with service provider. To populate those we need to have a script/job which will sync data to other places behind the scenes.
This scenario could be a case to use GridFS with mongo.
How gridFS works:
GridFS divides the file into parts, or chunks 1, and stores each
chunk as a separate document. By default, GridFS uses a chunk size of
255 kB; that is, GridFS divides a file into chunks of 255 kB with the
exception of the last chunk. The last chunk is only as large as
necessary. Similarly, files that are no larger than the chunk size
only have a final chunk, using only as much space as needed plus some
additional metadata.
In reply to comment:
BSON is binary format, and mongo has special replication mechanism for replicating collection data (gridFS is a special set of 2 collections). It uses OpLog to send diffs toother servers in replica set. More here
Any comments welcome!

Best way to host many orient databases

For our architecture we are contemplating something like multi-tenancy. In our approach each tenant would get their own database. When I say database, I don't mean server. I mean a database within an OrientDB server.
The question is... Is there a best practice way to do this. The three options we see are:
Stand up an entire OrientDB server to host a single database.
This seems inefficient. Especially since we are going to look towards a clustered / replicated architecture.
Put multiple databases into a single OrientDB Server
Here I am curious as to scalability. Is there a practical limit to how many databases a single OrientDB cluster can hold? Each tenant may make many connections to the database. If say each tenant makes 20 or so database connections and we have 1,000 tenants, I now have 20,000 connections going to the database. Obviously we would have many servers supporting this load so that would be distributed.
Some middle ground where we have a certain number of tenants hosted in each clustered instance of OrientDB
Not sure how to draw the line here.
Just wondering if there are best practices around this? Thanks and keep up the good work.
The physical limits are given by memory size, number of transactions managed per second and number of open files on the OS.
Every db in OrientDB is just a folder on the filesystem, if you never access the db it does not use system resources, but as soon as you access and query it, OrientDB has to keep files open, establish connections to the clients, allocate disk cache and so on.
My suggestion is to have at most a few tens of small databases on the same OrientDB instance.

MongoDB: Can different databases be placed on separate drives?

I am working on an application in which there is a pretty dramatic difference in usage patterns between "hot" data and other data. We have selected MongoDB as our data repository, and in most ways it seems to be a fantastic match for the kind of application we're building.
Here's the problem. There will be a central document repository, which must be searched and accessed fairly often: it's size is about 2 GB now, and will grow to 4GB in the next couple years. To increase performance, we will be placing that DB on a server-class mirrored SSD array, and given the total size of the data, don't imagine that memory will become a problem.
The system will also be keeping record versions, audit trail, customer interactions, notification records, and the like. that will be referenced only rarely, and which could grow quite large in size. We would like to place this on more traditional spinning disks, as it would be accessed rarely (we're guessing that a typical record might be accessed four or five times per year, and will be needed only to satisfy research and customer service inquiries), and could grow quite large, as well.
I haven't found any reference material that indicates whether MongoDB would allow us to place different databases on different disks (were're running mongod under Windows, but that doesn't have to be the case when we go into production.
Sorry about all the detail here, but these are primary factors we have to think about as we plan for deployment. Given Mongo's proclivity to grab all available memory, and that it'll be running on a machine that maxes out at 24GB memory, we're trying to work out the best production configuration for our database(s).
So here are what our options seem to be:
Single instance of Mongo with multiple databases This seems to have the advantage of simplicity, but I still haven't found any definitive answer on how to split databases to different physical drives on the machine.
Two instances of Mongo, one for the "hot" data, and the other for the archival stuff. I'm not sure how well Mongo will handle two instances of mongod contending for resources, but we were thinking that, since the 32-bit version of the server is limited to 2GB of memory, we could use that for the archival stuff without having it overwhelm the resources of the machine. For the "hot" data, we could then easily configure a 64-bit instance of the database engine to use an SSD array, and given the relatively small size of our data, the whole DB and indexes could be directly memory mapped without page faults.
Two instances of Mongo in two separate virtual machines Would could use VMWare, or something similar, to create two Linux machines which could host Mongo separately. While it might up the administrative burden a bit, this seems to me to provide the most fine-grained control of system resource usage, while still leaving the Windows Server host enough memory to run IIS and it's own processes.
But all this is speculation, as none of us have ever done significant MongoDB deployments before, so we don't have a great experience base to draw upon.
My actual question is whether there are options to have two databases in the same mongod server instance utilize entirely separate drives. But any insight into the advantages and drawbacks of our three identified deployment options would be welcome as well.
That's actually a pretty easy thing to do when using Linux:
Activate the directoryPerDB config option
Create the databases you need.
Shut down the instance.
Copy over the data from the individual database directories to the different block devices (disks, RAID arrays, Logical volumes, iSCSI targets and alike).
Mount the respective block devices to their according positions beyond the dbpath directory (don't forget to add the according lines to /etc/fstab!)
Restart mongod.
Edit: As a side note, I would like to add that you should not use Windows as OS for a production MongoDB. The available filesystems NTFS and ReFS perform horribly when compared to ext4 or XFS (the latter being the suggested filesystem for production, see the MongoDB production notes for details ). For this reason alone, I would suggest Linux. Another reason is the RAM used by rather unnecessary subsystems of Windows, like the GUI.

Is MongoDB usable as shared memory for a parallell processing / multiple-instances application?

I'm planning a product that will process updates from multiple data feeds. Input-data is guesstimated to be a total of 100Mbps stream containing 100 byte sized messages. These messages contain several data fields that needs to be checked for correlation with the existing data set within the application. If a input-message correlates with an existing data record, then the input-message will update the existing data-record, if not: it will create a new record. It is assumed that data are updated every 3 seconds in average.
The correlation process is assumed to be a bottleneck, and thus I intend to make our product able to run balanced in multiple processes if needed (most likely on a separate hardware or VM). Somewhat in the vicinity of Space-based architecture. I'd then like a shared storage between my processes so that all existing data records are visible to all the running processes. The shared storage will have to fetch possible candidates for correlation through a query/search based on some attributes (e.g. elevation). It will have to offer configuring warm redundancy, and a possibility to store snapshots every 5 minutes for logging.
Everything seems to be pointing towards MongoDB, but I'd like a confirmation from you that MongoDB will meet my needs. So do you think it is a go?
-Thank you
NB: I am not considering a relational database because we want to focus all coding in our application, instead of having to make 'stored procedures'/'functions' in a separate environment to optimize the performance of our system. Further, the data is diverse and I don't want to try normalize it into a schema.
Yes, MongoDB will meet your needs. I think the following aspects of your description are particularly relevant in your DB selection decision:
1. An update happens every 3 seconds
MongoDB has a database level write-lock (usually short lived) that blocks read operations. This means that you want will want to ensure that you have enough memory to fit your working set, and you will generally not run into any write-lock issues. Note that bulk inserts will hold the write lock for longer.
If you are sharding, you will want to consider shard keys that allow for write scaling i.e. distribute writes on different shards.
2. Shared storage for multiple processes
This is a pretty common scenario; in fact, many MongoDB deployments are expected be accessed from multiple processes concurrently. Unlike the write-lock, the read-lock does not block other reads.
3. Warm redundancy
Supported through MongoDB replication. If you'd like to read from secondary server(s) you will need to set the Read Preference to secondaryPreferred in your driver.

What is a cluster in a RDBMS?

Please explain what a cluster is in a RDBMS?
In SQL, a cluster can also refer to a specific physical ordering of rows.
For example, consider a database with two tables: INVOICES and INVOICE_ITEMS. If many INVOICE_ITEMs are inserted concurrently, chances are that items of the same invoice end up on multiple physical blocks of the underlying storage. When reading such an invoice, unneeded data will be read together with the interesting rows. Clustering INVOICE_ITEMS over the foreign key to INVOICES groups rows of items the same invoice together in the same block, thus reducing the amount of necessary read operations when accessing the invoice.
Read about clustered index on wikipedia.
In system administration, a "cluster" is a number of servers configured to provide the same service, but look like one server to the users.
This can be done for performance reasons (two servers can answer more requests than a single one) or redundancy (if one server crashes, the others still work).
Such configurations often need special software or setup to work. Some services, like serving static web content, can be clustered very easily. Others, like RDBMS, need complicated replication schemes to coordinate.
Read about computer clusters on wikipedia.
In statistics, a cluster is a "group of items so that objects from the same cluster are more similar to each other than objects from different clusters."
Read about Cluster analysis on wikipedia.
From here:
High-availability clusters (also known
as HA Clusters or Failover Clusters)
are computer clusters that are
implemented primarily for the purpose
of providing high availability of
services which the cluster provides.
They operate by having redundant
computers or nodes which are then used
to provide service when system
components fail. Normally, if a server
with a particular application crashes,
the application will be unavailable
until someone fixes the crashed
server. HA clustering remedies this
situation by detecting
hardware/software faults, and
immediately restarting the application
on another system without requiring
administrative intervention, a process
known as Failover
In database context it can have two completely different meanings:
may either mean data clustering or index clustering, which is grouping of similar rows. This is useful for data mining, some databases (e.g. Oracle) also use it to optimize physical data organization;
or cluster as database running on many closely linked servers.
Clustering, in the context of databases.
It refers to the ability of several servers or instances to connect to a single database.
An instance is the collection of memory and processes that interacts with a database, which is the set of physical files that actually store data.