I need guidance on designing data layer for my Web API services. The Web API controllers call the service layer which calls the data layer.
I am planning to use Entity Framework along with Dapper. It might not be a good solution to use both of them together, but I need both. I need EF as it is easier to use and developers in my team are familiar. I need Dapper for performance. So, it will be a mix depending on where the dapper can make significant impact and where we can compromise on being a little late.
When using EF, I wanted to use unit of work with repository for each entity. My repository will be like
public class StudentRepository : IStudentRepository, IDisposable
{
private SchoolContext context;
public StudentRepository(SchoolContext context)
{
this.context = context;
}
public IEnumerable<Student> GetStudents()
{
return context.Students.ToList();
}
}
I took that sample code from http://www.asp.net/mvc/overview/older-versions/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
So, now I wanted to introduce Dapper.
Approach 1: Initially I thought of having multiple repositories for Dapper and for Entity Framework and I can register the one which I need in my dependency injection container. But in this case, all the methods from IStudentRepository interface needs to be implemented in both the EF and Dapper concrete repository classes (if I could do this in Dapper completely, then I don't need EF at all).
Approach 2 : Then I thought about a more ugly approach and it is like exposing a property of IDbConnection along with the DbContext property (in this case SchoolContext) in the above StudentRepository class.
So the example would be like
public class StudentRepository : IStudentRepository, IDisposable
{
private SchoolContext context;
private IDbConnection Db;
public StudentRepository(SchoolContext context)
{
this.context = context;
this.db = new SqlConnection(ConfigurationManager.ConnectionStrings["conn"].ConnectionString);
}
public IEnumerable<Student> GetStudents()
{
return context.Students.ToList();
}
public IEnumerable<Student> GetStudentsBasedOnSomeComplexCondition()
{
//I can use the db property here and work with dapper in this case.
}
(The inclusion of the IDbConnection property can be done through an abstract class so as not to repeat the instantiation code of this property and to easily change the connection string in case if needed. I am adding it in the same class for simplicity).
Approach 3 : Now, I thought of separating it further which I again think is an ugly way. Along with StudentRepository which has only EF stuff (like the first example), I will have another concrete class called StudentDapperRepository which inherits from StudentRepository.
All the methods in StudentRepository will be changed to virtual. So, I will be using StudentDapperRepository for my actual data layer and this will have the Dapper implementations where needed and where not needed, it will use the base class StudentRepository methods (which is in EF).
I think all my solutions are ugly and adding more complexity and confusion. So, can I have some light into how I can do this.
Related
I am working on a .net core project where the requirement is to maintain an SQLite DB and an SQL Server DB simultaneously. I created two DbContext files SqlServerContext and SqliteContext and separate migration folders for them. These files are derived from a WorkerContext file that's derived from DbContext. The migration is working properly, as tables are created in both databases. But I could not make simultaneous data operation work.
This is the IKeyboardMouseActivityRepository. There are separate parts for using SqliteContext and SqlServerContext. I have to comment out one part when using the other. So I can do data entry in one DB at a time now.
public interface IKeyboardMouseActivityRepository :
IRepository<KeyboardMouseActivity, Guid, SqlServerContext>
// IRepository<KeyboardMouseActivity, Guid, SqliteContext>
{
}
public class KeyboardMouseActivityRepository :
IKeyboardMouseActivityRepository,
Repository<KeyboardMouseActivity, Guid, SqlServerContext>
// Repository<KeyboardMouseActivity, Guid, SqliteContext>
{
public KeyboardMouseActivityRepository(SqlServerContext dbContext)
: base(dbContext)
{
}
// public KeyboardMouseActivityRepository(SqliteContext dbContext)
// : base(dbContext)
// {
// }
}
This is the main Repository class.
public abstract class Repository<TEntity, TKey, TContext>
: IRepository<TEntity, TKey, TContext>
where TEntity : class, IEntity<TKey>
where TContext : DbContext
{
protected TContext _dbContext;
protected DbSet<TEntity> _dbSet;
public Repository(TContext context)
{
_dbContext = context;
_dbSet = _dbContext.Set<TEntity>();
}
// other methods such as Add, Remove etc.
}
My understanding is that since the context parameter is specified in KeyboardMouseActivityRepository, it only works for that specified context. How can I modify it so it works for both DbContext files and I can do data operation in both DB at the same time?
The repository you have defined is typed per-DbContext. If you want to have a repository that can update two known DbContext implementations then you can back off the Generic approach for the DbContexts and implement the repository to accept one of each in the constructor:
public abstract class Repository<TEntity, TKey>
: IRepository<TEntity, TKey>
where TEntity : class, IEntity<TKey>
{
protected SqlAppDbContext _sqlContext;
protected SqlLiteAppDbContext _sqlLiteContext;
protected DbSet<TEntity> _sqlDbSet;
protected DbSet<TEntity> _sqlLiteDbSet;
public Repository(SqlAppDbContext sqlContext, SqlLiteAppDbContext sqlLiteContext)
{
_sqlContext = sqlContext ?? throw new ArgumentNullException("sqlContext");
_sqlLiteContext = sqlLiteContext ?? throw new ArgumentNullException("sqlLiteContext");
_sqlDbSet = _sqlContext.Set<TEntity>();
_sqlLiteDbSet = _sqlLiteContext.Set<TEntity>();
}
// other methods such as Add, Remove etc.
}
Note that you will want to investigate and implement something like TransactionScope to help ensure that operations done via the repository are mutually committed or rolled back. For instance if you have code that attempts to update data in both DbSets and SaveChanges, if one succeeds and the other fails for any reason, usually the expectation would be they both roll back. Reads I expect would prioritize one DbSet over the other, but expect if you were to want to support something like a fail-over or situational load from one server or the other you will run into issues if it is at all possible that entities fetched from one DbContext are ever married up with entities fetched from the other. (entities loaded by _sqlContext cannot be associated with entities loaded by _sqlLiteContext) When updating entities and associating them via navigation properties you will be loading everything twice or playing a very dangerously error prone game of detaching and reattaching entities betewen DbContexts.
I would advise against using a Generic Repository pattern /w EF. This will paint you into various corners that will limit many of the capabilities that EF can provide for optimizing queries, working with projections, and performing operations like pagination, filtering, sorting, etc. efficiently without a lot of extra code or introducing pretty complex code into the repository.
Overall I wish you luck with the project, however a requirement and design like this will be a nest of hungry dragons for your time and sanity. :)
I am building web APIs in ASP.NET Core 1.1.
I have a number different databases (for different systems) which have common base schemas for configuration items such as Configuration, Users and groups (about 25 tables in all). I am trying to avoid duplicating the quite extensive EF configuration for the shared part of the model by inheriting from a base class as shown in the diagram.
However, this does not work because of the Entity Framework (EF) requirement to pass DbContextOptions<DerivedRepository> as a parameter to the constructor, where DerivedRepository must match the type of the repository the constructor is called on. The parameter must then be passed down to the base DbContext by calling :base(param).
So when (for example) InvestContext is initialised with DbContextOptions<InvestContext>, it calls base(DbContextOptions<InvestContext>) and EF throws an error because the call to the ConfigurationContext constructor is receiving a parameter of type DbContextOptions<InvestContext> instead of the required type DbContextOptions<ConfigurationContext>. Since the options field on DbContext is defined as
private readonly DbContextOptions _options;
I can't see a way around this.
What is the best way to define the shared model once and use it multiple times? I guess I could create a helper function and call it from every derived context, but it's not nearly as clean or transparent as inheritance.
I would like to bring this post from the OP's GitHub issue to everyone's attention:
I was able to resolve this without a hack by providing a protected constructor that uses DbContextOptions without any type. Making the second constructor protected ensures that it will not get used by DI.
public class MainDbContext : DbContext {
public MainDbContext(DbContextOptions<MainDbContext> options)
: base(options) {
}
protected MainDbContext(DbContextOptions options)
: base(options) {
}
}
public class SubDbContext : MainDbContext {
public SubDbContext (DbContextOptions<SubDbContext> options)
: base(options) {
}
}
OK, I have got this working in a way which still uses the inheritance hierarchy, like this (using InvestContext from above as the example):
As stated, the InvestContext class receives a constructor parameter of type DbContextOptions<InvestContext>, but must pass DbContextOptions<ConfigurationContext> to it's base.
I have written a method which digs the connectionstring out of a DbContextOptions variable, and builds a DbContextOptions instance of the required type. InvestContext uses this method to convert its options parameter to the right type before calling base().
The conversion method looks like this:
protected static DbContextOptions<T> ChangeOptionsType<T>(DbContextOptions options) where T:DbContext
{
var sqlExt = options.Extensions.FirstOrDefault(e => e is SqlServerOptionsExtension);
if (sqlExt == null)
throw (new Exception("Failed to retrieve SQL connection string for base Context"));
return new DbContextOptionsBuilder<T>()
.UseSqlServer(((SqlServerOptionsExtension)sqlExt).ConnectionString)
.Options;
}
and the InvestContext constructor call changes from this:
public InvestContext(DbContextOptions<InvestContext> options):base(options)
to this:
public InvestContext(DbContextOptions<InvestContext> options):base(ChangeOptionsType<ConfigurationContext>(options))
So far both InvestContext and ConfigurationContext work for simple queries, but it seems like a bit of a hack and possibly not something the designers of EF7 had in mind.
I am still concerned that EF is going to get itself in a knot when I try complex queries, updates etc. It appears that this is not a problem, see below)
Edit: I've logged this problem as an issue with the EF7 team here, and a team member has suggested a change to the EF Core core as follows:
"We should update the check to allow TContext to be a type that is derived from the current context type"
This would solve the problem.
After further interaction with that team member (which you can see on the issue) and some digging through the EF Core code, the approach I've outlined above looks safe and the best approach until the suggested change is implemented.
Depending on your requirements you can simply use the non type specific version of DbContextOptions.
Change these:
public ConfigurationContext(DbContextOptions<ConfigurationContext> options):base(options)
public InvestContext(DbContextOptions<InvestContext> options):base(options)
to this:
public ConfigurationContext(DbContextOptions options):base(options)
public InvestContext(DbContextOptions options):base(options)
Then if you create your ConfigurationContext first, the classes that inherit it seem to get the same configuration. It may also depend on the order in which you initialize the different contexts.
Edit:
My working example:
public class QueryContext : DbContext
{
public QueryContext(DbContextOptions options): base(options)
{
}
}
public class CommandContext : QueryContext
{
public CommandContext(DbContextOptions options): base(options)
{
}
}
And in Startup.cs
services.AddDbContext<CommandContext>(options =>
options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));
services.AddDbContext<QueryContext>(options =>
options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));
alternatively, in a test class:
var connectionString = "Data Source=MyDatabase;Initial Catalog=MyData;Integrated Security=SSPI;";
var serviceProvider = new ServiceCollection()
.AddDbContext<QueryContext>(options => options.UseSqlServer(connectionString))
.BuildServiceProvider();
_db = serviceProvider.GetService<QueryContext>();
I am about to implement an Entity Framework 6 design with a repository and unit of work.
There are so many articles around and I'm not sure what the best advice is: For example I realy like the pattern implemented here: for the reasons suggested in the article here
However, Tom Dykstra (Senior Programming Writer on Microsoft's Web Platform & Tools Content Team) suggests it should be done in another article: here
I subscribe to Pluralsight, and it is implemented in a slightly different way pretty much every time it is used in a course so choosing a design is difficult.
Some people seem to suggest that unit of work is already implemented by DbContext as in this post, so we shouldn't need to implement it at all.
I realise that this type of question has been asked before and this may be subjective but my question is direct:
I like the approach in the first (Code Fizzle) article and wanted to know if it is perhaps more maintainable and as easily testable as other approaches and safe to go ahead with?
Any other views are more than welcome.
#Chris Hardie is correct, EF implements UoW out of the box. However many people overlook the fact that EF also implements a generic repository pattern out of the box too:
var repos1 = _dbContext.Set<Widget1>();
var repos2 = _dbContext.Set<Widget2>();
var reposN = _dbContext.Set<WidgetN>();
...and this is a pretty good generic repository implementation that is built into the tool itself.
Why go through the trouble of creating a ton of other interfaces and properties, when DbContext gives you everything you need? If you want to abstract the DbContext behind application-level interfaces, and you want to apply command query segregation, you could do something as simple as this:
public interface IReadEntities
{
IQueryable<TEntity> Query<TEntity>();
}
public interface IWriteEntities : IReadEntities, IUnitOfWork
{
IQueryable<TEntity> Load<TEntity>();
void Create<TEntity>(TEntity entity);
void Update<TEntity>(TEntity entity);
void Delete<TEntity>(TEntity entity);
}
public interface IUnitOfWork
{
int SaveChanges();
}
You could use these 3 interfaces for all of your entity access, and not have to worry about injecting 3 or more different repositories into business code that works with 3 or more entity sets. Of course you would still use IoC to ensure that there is only 1 DbContext instance per web request, but all 3 of your interfaces are implemented by the same class, which makes it easier.
public class MyDbContext : DbContext, IWriteEntities
{
public IQueryable<TEntity> Query<TEntity>()
{
return Set<TEntity>().AsNoTracking(); // detach results from context
}
public IQueryable<TEntity> Load<TEntity>()
{
return Set<TEntity>();
}
public void Create<TEntity>(TEntity entity)
{
if (Entry(entity).State == EntityState.Detached)
Set<TEntity>().Add(entity);
}
...etc
}
You now only need to inject a single interface into your dependency, regardless of how many different entities it needs to work with:
// NOTE: In reality I would never inject IWriteEntities into an MVC Controller.
// Instead I would inject my CQRS business layer, which consumes IWriteEntities.
// See #MikeSW's answer for more info as to why you shouldn't consume a
// generic repository like this directly by your web application layer.
// See http://www.cuttingedge.it/blogs/steven/pivot/entry.php?id=91 and
// http://www.cuttingedge.it/blogs/steven/pivot/entry.php?id=92 for more info
// on what a CQRS business layer that consumes IWriteEntities / IReadEntities
// (and is consumed by an MVC Controller) might look like.
public class RecipeController : Controller
{
private readonly IWriteEntities _entities;
//Using Dependency Injection
public RecipeController(IWriteEntities entities)
{
_entities = entities;
}
[HttpPost]
public ActionResult Create(CreateEditRecipeViewModel model)
{
Mapper.CreateMap<CreateEditRecipeViewModel, Recipe>()
.ForMember(r => r.IngredientAmounts, opt => opt.Ignore());
Recipe recipe = Mapper.Map<CreateEditRecipeViewModel, Recipe>(model);
_entities.Create(recipe);
foreach(Tag t in model.Tags) {
_entities.Create(tag);
}
_entities.SaveChanges();
return RedirectToAction("CreateRecipeSuccess");
}
}
One of my favorite things about this design is that it minimizes the entity storage dependencies on the consumer. In this example the RecipeController is the consumer, but in a real application the consumer would be a command handler. (For a query handler, you would typically consume IReadEntities only because you just want to return data, not mutate any state.) But for this example, let's just use RecipeController as the consumer to examine the dependency implications:
Say you have a set of unit tests written for the above action. In each of these unit tests, you new up the Controller, passing a mock into the constructor. Then, say your customer decides they want to allow people to create a new Cookbook or add to an existing one when creating a new recipe.
With a repository-per-entity or repository-per-aggregate interface pattern, you would have to inject a new repository instance IRepository<Cookbook> into your controller constructor (or using #Chris Hardie's answer, write code to attach yet another repository to the UoW instance). This would immediately make all of your other unit tests break, and you would have to go back to modify the construction code in all of them, passing yet another mock instance, and widening your dependency array. However with the above, all of your other unit tests will still at least compile. All you have to do is write additional test(s) to cover the new cookbook functionality.
I'm (not) sorry to say that the codefizzle, Dyksta's article and the previous answers are wrong. For the simple fact that they use the EF entities as domain (business) objects, which is a big WTF.
Update: For a less technical explanation (in plain words) read Repository Pattern for Dummies
In a nutshell, ANY repository interface should not be coupled to ANY persistence (ORM) detail. The repo interface deals ONLY with objects that makes sense for the rest of the app (domain, maybe UI as in presentation). A LOT of people (with MS leading the pack, with intent I suspect) make the mistake of believing that they can reuse their EF entities or that can be business object on top of them.
While it can happen, it's quite rare. In practice, you'll have a lot of domain objects 'designed' after database rules i.e bad modelling. The repository purpose is to decouple the rest of the app (mainly the business layer) from its persistence form.
How do you decouple it when your repo deals with EF entities (persistence detail) or its methods return IQueryable, a leaking abstraction with wrong semantics for this purpose (IQueryable allows you to build a query, thus implying that you need to know persistence details thus negating the repository's purpose and functionality)?
A domin object should never know about persistence, EF, joins etc. It shouldn't know what db engine you're using or if you're using one. Same with the rest of the app, if you want it to be decoupled from the persistence details.
The repository interface know only about what the higher layer know. This means, that a generic domain repository interface looks like this
public interface IStore<TDomainObject> //where TDomainObject != Ef (ORM) entity
{
void Save(TDomainObject entity);
TDomainObject Get(Guid id);
void Delete(Guid id);
}
The implementation will reside in the DAL and will use EF to work with the db. However the implementation looks like this
public class UsersRepository:IStore<User>
{
public UsersRepository(DbContext db) {}
public void Save(User entity)
{
//map entity to one or more ORM entities
//use EF to save it
}
//.. other methods implementation ...
}
You don't really have a concrete generic repository. The only usage of a concrete generic repository is when ANY domain object is stored in serialized form in a key-value like table. It isn't the case with an ORM.
What about querying?
public interface IQueryUsers
{
PagedResult<UserData> GetAll(int skip, int take);
//or
PagedResult<UserData> Get(CriteriaObject criteria,int skip, int take);
}
The UserData is the read/view model fit for the query context usage.
You can use directly EF for querying in a query handler if you don't mind that your DAL knows about view models and in that case you won't be needing any query repo.
Conclusion
Your business object shouldn't know about EF entities.
The repository will use an ORM, but it never exposes the ORM to the rest of the app, so the repo interface will use only domain objects or view models (or any other app context object that isn't a persistence detail)
You do not tell the repo how to do its work i.e NEVER use IQueryable with a repo interface
If you just want to use the db in a easier/cool way and you're dealing with a simple CRUD app where you don't need (be sure about it) to maintain separation of concerns then skip the repository all together, use directly EF for everything data. The app will be tightly coupled to EF but at least you'll cut the middle man and it will be on purpose not by mistake.
Note that using the repository in the wrong way, will invalidate its use and your app will still be tightly coupled to the persistence (ORM).
In case you believe the ORM is there to magically store your domain objects, it's not. The ORM purpose is to simulate an OOP storage on top of relational tables. It has everything to do with persistence and nothing to do with domain, so don't use the ORM outside persistence.
DbContext is indeed built with the Unit of Work pattern. It allows all of its entities to share the same context as we work with them. This implementation is internal to the DbContext.
However, it should be noted that if you instantiate two DbContext objects, neither of them will see the other's entities that they are each tracking. They are insulated from one another, which can be problematic.
When I build an MVC application, I want to ensure that during the course of the request, all my data access code works off of a single DbContext. To achieve that, I apply the Unit of Work as a pattern external to DbContext.
Here is my Unit of Work object from a barbecue recipe app I'm building:
public class UnitOfWork : IUnitOfWork
{
private BarbecurianContext _context = new BarbecurianContext();
private IRepository<Recipe> _recipeRepository;
private IRepository<Category> _categoryRepository;
private IRepository<Tag> _tagRepository;
public IRepository<Recipe> RecipeRepository
{
get
{
if (_recipeRepository == null)
{
_recipeRepository = new RecipeRepository(_context);
}
return _recipeRepository;
}
}
public void Save()
{
_context.SaveChanges();
}
**SNIP**
I attach all my repositories, which are all injected with the same DbContext, to my Unit of Work object. So long as any repositories are requested from the Unit of Work object, we can be assured that all our data access code will be managed with the same DbContext - awesome sauce!
If I were to use this in an MVC app, I would ensure the Unit of Work is used throughout the request by instantiating it in the controller, and using it throughout its actions:
public class RecipeController : Controller
{
private IUnitOfWork _unitOfWork;
private IRepository<Recipe> _recipeService;
private IRepository<Category> _categoryService;
private IRepository<Tag> _tagService;
//Using Dependency Injection
public RecipeController(IUnitOfWork unitOfWork)
{
_unitOfWork = unitOfWork;
_categoryRepository = _unitOfWork.CategoryRepository;
_recipeRepository = _unitOfWork.RecipeRepository;
_tagRepository = _unitOfWork.TagRepository;
}
Now in our action, we can be assured that all our data access code will use the same DbContext:
[HttpPost]
public ActionResult Create(CreateEditRecipeViewModel model)
{
Mapper.CreateMap<CreateEditRecipeViewModel, Recipe>().ForMember(r => r.IngredientAmounts, opt => opt.Ignore());
Recipe recipe = Mapper.Map<CreateEditRecipeViewModel, Recipe>(model);
_recipeRepository.Create(recipe);
foreach(Tag t in model.Tags){
_tagRepository.Create(tag); //I'm using the same DbContext as the recipe repo!
}
_unitOfWork.Save();
Searching around the internet I found this http://www.thereformedprogrammer.net/is-the-repository-pattern-useful-with-entity-framework/ it's a 2 part article about the usefulness of the repository pattern by Jon Smith.
The second part focuses on a solution. Hope it helps!
Repository with unit of work pattern implementation is a bad one to answer your question.
The DbContext of the entity framework is implemented by Microsoft according to the unit of work pattern. That means the context.SaveChanges is transactionally saving your changes in one go.
The DbSet is also an implementation of the Repository pattern. Do not build repositories that you can just do:
void Add(Customer c)
{
_context.Customers.Add(c);
}
Create a one-liner method for what you can do inside the service anyway ???
There is no benefit and nobody is changing EF ORM to another ORM nowadays...
You do not need that freedom...
Chris Hardie is argumenting that there could be instantiated multiple context objects but already doing this you do it wrong...
Just use an IOC tool you like and setup the MyContext per Http Request and your are fine.
Take ninject for example:
kernel.Bind<ITeststepService>().To<TeststepService>().InRequestScope().WithConstructorArgument("context", c => new ITMSContext());
The service running the business logic gets the context injected.
Just keep it simple stupid :-)
You should consider "command/query objects" as an alternative, you can find a bunch of interesting articles around this area, but here is a good one:
https://rob.conery.io/2014/03/03/repositories-and-unitofwork-are-not-a-good-idea/
When you need a transaction over multiple DB objects, use one command object per command to avoid the complexity of the UOW pattern.
A query object per query is likely unnecessary for most projects. Instead you might choose to start with a 'FooQueries' object
...by which I mean you can start with a Repository pattern for READS but name it as "Queries" to be explicit that it does not and should not do any inserts/updates.
Later, you might find splitting out individual query objects worthwhile if you want to add things like authorization and logging, you could feed a query object into a pipeline.
I always use UoW with EF code first. I find it more performant and easier tot manage your contexts, to prevent memory leaking and such. You can find an example of my workaround on my github: http://www.github.com/stefchri in the RADAR project.
If you have any questions about it feel free to ask them.
I'm very familiar with UoW, Repository Pattern, etc. but in seeing various implementations of the pattern for Entity Framework, I'm curious why anyone would have a Save or Add method on their repository. If you use the repository to get you a new instance of an object that I would imagine someone would already
public Customer GetNewCustomer()
{
Customer customer = new Customer();
... any initialization code here ...
_context.Customers.AddObject(customer);
return customer;
}
I know in some designs, you can simply use
Customer customer = new Customer();
and its not attached anywhere to the context. However I'm a fan of private constructors so there is a single point of instantiation for a Customer object. With that in mind wouldn't it makes sense to never have an add/save method on the repository when using a UoW pattern and only have this functionality on the IUnitOfWork interface?
When I follow the Spring idiom in Java, units of work (and transactions) are associated with services. They use model and persistence objects to fulfill a request. Transactions are demarked using aspects.
I don't know whether .NET follows a similar idea, but it'd be worth exploring. Have interface-based POCO services and let them own transactions.
I don't think that your solution is correct. That will add empty customer to current unit of work. That means that later code will have a hard time if it decide not to save customer by the current unit of work.
It is quite common that repository have method to save entity. You are combining two patterns used in Domain driven design
Repository
Object factory
Repository's responsibility is to retrieve or store entities. Object factory's responsibility is to handle entity construction.
Btw. private constructor of your entity will not be accessible in your repository if repository is not the entity (which would be quite bad).
...wouldn't it makes sense to never have an add/save method on the
repository when using a UoW pattern and only have this functionality
on the IUnitOfWork interface?
Yes I think it makes sense to only have the Save method on the IUnitOfWork interface. However, I no longer use the repository pattern with EF. Instead, I now use these variations of the command & query patterns.
If you think about it, the EF DbContext is really doing 3 things: 1.) it functions as your repository for reading entity state, 2.) as your repository for mutating entity state, and 3.) as a UnitOfWork for tracking multiple changes and combining them into a single transaction to persist state mutations.
So, why not separate these 3 responsibilities into 3 different interfaces?
public interface IUnitOfWork
{
int SaveChanges();
}
public interface ICommandEntities : IQueryEntities
{
void Create(Entity entity);
void Update(Entity entity);
void Purge(Entity entity);
}
public interface IQueryEntities
{
IQueryable<AggregateRoot1> AggregateRoot1s { get; }
IQueryable<AggregateRoot2> AggregateRoot2s { get; }
IQUeryable<AggregateRootN> AggregateRootNs { get; }
IQueryable<TEntity> EagerLoad<TEntity>(IQueryable<TEntity> query,
Expression<Func<TEntity, object>> expression)
where TEntity : Entity;
}
You can then implement these 3 interfaces on your DbContext class. This keeps the interfaces nice and segregated, and lets you dependency inject only those methods of the DbContext which you need.
For example, your domain should be persistence ignorant, right? In that case, don't give any of your domain classes dependencies on the IUnitOfWork interface. Instead, handle the IUnitOfWork in your IoC composition root (or in an MVC action filter). Then, your query and command handlers deal only with the ICommandEntities and IQueryEntities interfaces.
Let me say, I have come to the conclusion (after a lot of trial) that Repository & Unit of Work when using Entity Framework is just wrong, wrong, wrong and this says why quite well.
But I really hate on those embedded queries. Question is, where can I put them instead if I'm so against a repository, etc? (clean answers only please, examples much appreciated).
I just nuked two projects containing my repositories, unit of work and interfaces with hundreds of files because the payback was nowhere to be seen. I think lots of people, myself included, just jumped on the Repository bandwagon because that's what everybody else was doing but in retrospect, I think it's really a ride to nowhere.
/sigh
Richard
Where do you expect to put them? You have only few choices:
Let them be where they are and use custom extension methods, query views, mapped database views or custom defining queries to define reusable parts
Expose every single query as method on some separate class. The method mustn't expose IQueryable and mustn't accept Expression as parameter = whole query logic must be wrapped in the method. But this will make your class covering related methods much like repository (the only one which can be mocked or faked). This implementation is close to implementation used with stored procedures.
You will do the same as in previous method but instead of placing queries in separate class you will put them as static methods to entity directly. This is much worse testable because static methods cannot be replaced by mocking (it requires more complex testing framework). This is part of active record pattern where each entity is responsible for its loading and saving to database.
Example of custom extension method:
public static IQueryable<TEntity> GetByName(this IQueryalbe<TEntity> query, string name)
where TEntity : IEntityWithName
{
return query.Where(e => e.Name == name);
}
Example of custom class exposing methods:
public class QueryProvider
{
public QueryProvider() {}
public IEnumerable<TEntity> GetByName(IYourContext context, string name)
where TEntity : IEntityWithName
{
return context.CreateObjectSet<TEntity>().Where(e => e.Name == name).ToList();
}
}
Build Reusable, Testable Queries Part 1
This is a blog post I wrote about building reusable queries. Using Extension Methods allows you to build composable queries.
using a pattern like the specification pattern can help you build queries that can be reused or saved (serialized). Further more if you have a double entry system you can execute the same query instance over two different databases.
the following example does not use EF but replace the IEnumerable by an EF context and you get what ou are looking for. parameters are passed in through the constructor.
public class PartialMatchQuery : IModelQuery<string, IEnumerable<string>>
{
private readonly string partial;
public PartialMatchQuery(string partialString)
{
partial = partialString;
}
public IEnumerable<string> Execute(IEnumerable<string> model)
{
return model.Where(s => s.ToLower().Contains(partial));
}
}