How to pack/unpack a byte in q/kdb - kdb

What I'm trying to do here is pack a byte like I could in c# like this:
string symbol = "T" + "\0";
byte orderTypeEnum = (byte)OrderType.Limit;
int size = -10;
byte[] packed = new byte[symbol.Length + sizeof(byte) + sizeof(int)]; // byte = 1, int = 4
Encoding.UTF8.GetBytes(symbol, 0, symbol.Length, packed, 0); // add the symbol
packed[symbol.Length] = orderTypeEnum; // add order type
Array.ConstrainedCopy(BitConverter.GetBytes(size), 0, packed, symbol.Length + 1, sizeof(int)); // add size
client.Send(packed);
Is there any way to accomplish this in q?
As for the Unpacking in C# I can easily do this:
byte[] fillData = client.Receive();
long ticks = BitConverter.ToInt64(fillData, 0);
int fillSize = BitConverter.ToInt32(fillData, 8);
double fillPrice = BitConverter.ToDouble(fillData, 12);
new
{
Timestamp = ticks,
Size = fillSize,
Price = fillPrice
}.Dump("Received response");
Thanks!

One way to do it is
symbol:"T\000"
orderTypeEnum: 123 / (byte)OrderType.Limit
size: -10i;
packed: "x"$symbol,("c"$orderTypeEnum),reverse 0x0 vs size / *
UPDATE:
To do the reverse you can use 1: function:
(8 4 8; "jif")1:0x0000000000000400000008003ff3be76c8b43958 / server data is big-endian
("jif"; 8 4 8)1:0x0000000000000400000008003ff3be76c8b43958 / server data is little-endian
/ ticks=1024j, fillSize=2048i, fillPrice=1.234
*) When using BitConverter.GetBytes() you should also check the value of BitConverter.IsLittleEndian to make sure you send bytes over the wire in a proper order. Contrary to popular belief .NET is not always little-endian. Hovewer, an internal representation in kdb+ (a value returned by 0x0 vs ...) is always big-endian. Depending on your needs you may or may not want to use reverse above.

Related

EditorGuiLayout.MaskField issue with large enums

I'm working on an input system that would allow the user to translate input mappings between different input devices and operating systems and potentially define their own.
I'm trying to create a MaskField for an editor window where the user can select from a list of RuntimePlatforms, but selecting individual values results in multiple values being selected.
Mainly for debugging I set it up to generate an equivalent enum RuntimePlatformFlags that it uses instead of RuntimePlatform:
[System.Flags]
public enum RuntimePlatformFlags: long
{
OSXEditor=(0<<0),
OSXPlayer=(0<<1),
WindowsPlayer=(0<<2),
OSXWebPlayer=(0<<3),
OSXDashboardPlayer=(0<<4),
WindowsWebPlayer=(0<<5),
WindowsEditor=(0<<6),
IPhonePlayer=(0<<7),
PS3=(0<<8),
XBOX360=(0<<9),
Android=(0<<10),
NaCl=(0<<11),
LinuxPlayer=(0<<12),
FlashPlayer=(0<<13),
LinuxEditor=(0<<14),
WebGLPlayer=(0<<15),
WSAPlayerX86=(0<<16),
MetroPlayerX86=(0<<17),
MetroPlayerX64=(0<<18),
WSAPlayerX64=(0<<19),
MetroPlayerARM=(0<<20),
WSAPlayerARM=(0<<21),
WP8Player=(0<<22),
BB10Player=(0<<23),
BlackBerryPlayer=(0<<24),
TizenPlayer=(0<<25),
PSP2=(0<<26),
PS4=(0<<27),
PSM=(0<<28),
XboxOne=(0<<29),
SamsungTVPlayer=(0<<30),
WiiU=(0<<31),
tvOS=(0<<32),
Switch=(0<<33),
Lumin=(0<<34),
BJM=(0<<35),
}
In this linked screenshot, only the first 4 options were selected. The integer next to "Platforms: " is the mask itself.
I'm not a bitwise wizard by a large margin, but my assumption is that this occurs because EditorGUILayout.MaskField returns a 32bit int value, and there are over 32 enum options. Are there any workarounds for this or is something else causing the issue?
First thing I've noticed is that all values inside that Enum is the same because you are shifting 0 bits to left. You can observe this by logging your values with this script.
// Shifts 0 bits to the left, printing "0" 36 times.
for(int i = 0; i < 36; i++){
Debug.Log(System.Convert.ToString((0 << i), 2));
}
// Shifts 1 bits to the left, printing values up to 2^35.
for(int i = 0; i < 36; i++){
Debug.Log(System.Convert.ToString((1 << i), 2));
}
The reason inheriting from long does not work alone, is because of bit shifting. Check out this example I found about the issue:
UInt32 x = ....;
UInt32 y = ....;
UInt64 result = (x << 32) + y;
The programmer intended to form a 64-bit value from two 32-bit ones by shifting 'x' by 32 bits and adding the most significant and the least significant parts. However, as 'x' is a 32-bit value at the moment when the shift operation is performed, shifting by 32 bits will be equivalent to shifting by 0 bits, which will lead to an incorrect result.
So you should also cast the shifting bits. Like this:
public enum RuntimePlatformFlags : long {
OSXEditor = (1 << 0),
OSXPlayer = (1 << 1),
WindowsPlayer = (1 << 2),
OSXWebPlayer = (1 << 3),
// With literals.
tvOS = (1L << 32),
Switch = (1L << 33),
// Or with casts.
Lumin = ((long)1 << 34),
BJM = ((long)1 << 35),
}

MongoDB findOne() return 404 "Not found" in Postman but in commend line it comes out [duplicate]

How do I convert a string to an integer in JavaScript?
The simplest way would be to use the native Number function:
var x = Number("1000")
If that doesn't work for you, then there are the parseInt, unary plus, parseFloat with floor, and Math.round methods.
parseInt()
var x = parseInt("1000", 10); // You want to use radix 10
// So you get a decimal number even with a leading 0 and an old browser ([IE8, Firefox 20, Chrome 22 and older][1])
Unary plus
If your string is already in the form of an integer:
var x = +"1000";
floor()
If your string is or might be a float and you want an integer:
var x = Math.floor("1000.01"); // floor() automatically converts string to number
Or, if you're going to be using Math.floor several times:
var floor = Math.floor;
var x = floor("1000.01");
parseFloat()
If you're the type who forgets to put the radix in when you call parseInt, you can use parseFloat and round it however you like. Here I use floor.
var floor = Math.floor;
var x = floor(parseFloat("1000.01"));
round()
Interestingly, Math.round (like Math.floor) will do a string to number conversion, so if you want the number rounded (or if you have an integer in the string), this is a great way, maybe my favorite:
var round = Math.round;
var x = round("1000"); // Equivalent to round("1000", 0)
Try parseInt function:
var number = parseInt("10");
But there is a problem. If you try to convert "010" using parseInt function, it detects as octal number, and will return number 8. So, you need to specify a radix (from 2 to 36). In this case base 10.
parseInt(string, radix)
Example:
var result = parseInt("010", 10) == 10; // Returns true
var result = parseInt("010") == 10; // Returns false
Note that parseInt ignores bad data after parsing anything valid.
This guid will parse as 51:
var result = parseInt('51e3daf6-b521-446a-9f5b-a1bb4d8bac36', 10) == 51; // Returns true
There are two main ways to convert a string to a number in JavaScript. One way is to parse it and the other way is to change its type to a Number. All of the tricks in the other answers (e.g., unary plus) involve implicitly coercing the type of the string to a number. You can also do the same thing explicitly with the Number function.
Parsing
var parsed = parseInt("97", 10);
parseInt and parseFloat are the two functions used for parsing strings to numbers. Parsing will stop silently if it hits a character it doesn't recognise, which can be useful for parsing strings like "92px", but it's also somewhat dangerous, since it won't give you any kind of error on bad input, instead you'll get back NaN unless the string starts with a number. Whitespace at the beginning of the string is ignored. Here's an example of it doing something different to what you want, and giving no indication that anything went wrong:
var widgetsSold = parseInt("97,800", 10); // widgetsSold is now 97
It's good practice to always specify the radix as the second argument. In older browsers, if the string started with a 0, it would be interpreted as octal if the radix wasn't specified which took a lot of people by surprise. The behaviour for hexadecimal is triggered by having the string start with 0x if no radix is specified, e.g., 0xff. The standard actually changed with ECMAScript 5, so modern browsers no longer trigger octal when there's a leading 0 if no radix has been specified. parseInt understands radixes up to base 36, in which case both upper and lower case letters are treated as equivalent.
Changing the Type of a String to a Number
All of the other tricks mentioned above that don't use parseInt, involve implicitly coercing the string into a number. I prefer to do this explicitly,
var cast = Number("97");
This has different behavior to the parse methods (although it still ignores whitespace). It's more strict: if it doesn't understand the whole of the string than it returns NaN, so you can't use it for strings like 97px. Since you want a primitive number rather than a Number wrapper object, make sure you don't put new in front of the Number function.
Obviously, converting to a Number gives you a value that might be a float rather than an integer, so if you want an integer, you need to modify it. There are a few ways of doing this:
var rounded = Math.floor(Number("97.654")); // other options are Math.ceil, Math.round
var fixed = Number("97.654").toFixed(0); // rounded rather than truncated
var bitwised = Number("97.654")|0; // do not use for large numbers
Any bitwise operator (here I've done a bitwise or, but you could also do double negation as in an earlier answer or a bit shift) will convert the value to a 32 bit integer, and most of them will convert to a signed integer. Note that this will not do want you want for large integers. If the integer cannot be represented in 32 bits, it will wrap.
~~"3000000000.654" === -1294967296
// This is the same as
Number("3000000000.654")|0
"3000000000.654" >>> 0 === 3000000000 // unsigned right shift gives you an extra bit
"300000000000.654" >>> 0 === 3647256576 // but still fails with larger numbers
To work correctly with larger numbers, you should use the rounding methods
Math.floor("3000000000.654") === 3000000000
// This is the same as
Math.floor(Number("3000000000.654"))
Bear in mind that coercion understands exponential notation and Infinity, so 2e2 is 200 rather than NaN, while the parse methods don't.
Custom
It's unlikely that either of these methods do exactly what you want. For example, usually I would want an error thrown if parsing fails, and I don't need support for Infinity, exponentials or leading whitespace. Depending on your use case, sometimes it makes sense to write a custom conversion function.
Always check that the output of Number or one of the parse methods is the sort of number you expect. You will almost certainly want to use isNaN to make sure the number is not NaN (usually the only way you find out that the parse failed).
ParseInt() and + are different
parseInt("10.3456") // returns 10
+"10.3456" // returns 10.3456
Fastest
var x = "1000"*1;
Test
Here is little comparison of speed (macOS only)... :)
For Chrome, 'plus' and 'mul' are fastest (>700,000,00 op/sec), 'Math.floor' is slowest. For Firefox, 'plus' is slowest (!) 'mul' is fastest (>900,000,000 op/sec). In Safari 'parseInt' is fastest, 'number' is slowest (but results are quite similar, >13,000,000 <31,000,000). So Safari for cast string to int is more than 10x slower than other browsers. So the winner is 'mul' :)
You can run it on your browser by this link
https://jsperf.com/js-cast-str-to-number/1
I also tested var x = ~~"1000";. On Chrome and Safari, it is a little bit slower than var x = "1000"*1 (<1%), and on Firefox it is a little bit faster (<1%).
I use this way of converting string to number:
var str = "25"; // String
var number = str*1; // Number
So, when multiplying by 1, the value does not change, but JavaScript automatically returns a number.
But as it is shown below, this should be used if you are sure that the str is a number (or can be represented as a number), otherwise it will return NaN - not a number.
You can create simple function to use, e.g.,
function toNumber(str) {
return str*1;
}
Try parseInt.
var number = parseInt("10", 10); //number will have value of 10.
I love this trick:
~~"2.123"; //2
~~"5"; //5
The double bitwise negative drops off anything after the decimal point AND converts it to a number format. I've been told it's slightly faster than calling functions and whatnot, but I'm not entirely convinced.
Another method I just saw here (a question about the JavaScript >>> operator, which is a zero-fill right shift) which shows that shifting a number by 0 with this operator converts the number to a uint32 which is nice if you also want it unsigned. Again, this converts to an unsigned integer, which can lead to strange behaviors if you use a signed number.
"-2.123" >>> 0; // 4294967294
"2.123" >>> 0; // 2
"-5" >>> 0; // 4294967291
"5" >>> 0; // 5
In JavaScript, you can do the following:
ParseInt
parseInt("10.5") // Returns 10
Multiplying with 1
var s = "10";
s = s*1; // Returns 10
Using the unary operator (+)
var s = "10";
s = +s; // Returns 10
Using a bitwise operator
(Note: It starts to break after 2140000000. Example: ~~"2150000000" = -2144967296)
var s = "10.5";
s = ~~s; // Returns 10
Using Math.floor() or Math.ceil()
var s = "10";
s = Math.floor(s) || Math.ceil(s); // Returns 10
Please see the below example. It will help answer your question.
Example Result
parseInt("4") 4
parseInt("5aaa") 5
parseInt("4.33333") 4
parseInt("aaa"); NaN (means "Not a Number")
By using parseint function, it will only give op of integer present and not the string.
Beware if you use parseInt to convert a float in scientific notation!
For example:
parseInt("5.6e-14")
will result in
5
instead of
0
Also as a side note: MooTools has the function toInt() which is used on any native string (or float (or integer)).
"2".toInt() // 2
"2px".toInt() // 2
2.toInt() // 2
We can use +(stringOfNumber) instead of using parseInt(stringOfNumber).
Example: +("21") returns int of 21, like the parseInt("21").
We can use this unary "+" operator for parsing float too...
To convert a String into Integer, I recommend using parseFloat and not parseInt. Here's why:
Using parseFloat:
parseFloat('2.34cms') //Output: 2.34
parseFloat('12.5') //Output: 12.5
parseFloat('012.3') //Output: 12.3
Using parseInt:
parseInt('2.34cms') //Output: 2
parseInt('12.5') //Output: 12
parseInt('012.3') //Output: 12
So if you have noticed parseInt discards the values after the decimals, whereas parseFloat lets you work with floating point numbers and hence more suitable if you want to retain the values after decimals. Use parseInt if and only if you are sure that you want the integer value.
There are many ways in JavaScript to convert a string to a number value... All are simple and handy. Choose the way which one works for you:
var num = Number("999.5"); //999.5
var num = parseInt("999.5", 10); //999
var num = parseFloat("999.5"); //999.5
var num = +"999.5"; //999.5
Also, any Math operation converts them to number, for example...
var num = "999.5" / 1; //999.5
var num = "999.5" * 1; //999.5
var num = "999.5" - 1 + 1; //999.5
var num = "999.5" - 0; //999.5
var num = Math.floor("999.5"); //999
var num = ~~"999.5"; //999
My prefer way is using + sign, which is the elegant way to convert a string to number in JavaScript.
Try str - 0 to convert string to number.
> str = '0'
> str - 0
0
> str = '123'
> str - 0
123
> str = '-12'
> str - 0
-12
> str = 'asdf'
> str - 0
NaN
> str = '12.34'
> str - 0
12.34
Here are two links to compare the performance of several ways to convert string to int
https://jsperf.com/number-vs-parseint-vs-plus
http://phrogz.net/js/string_to_number.html
Here is the easiest solution
let myNumber = "123" | 0;
More easy solution
let myNumber = +"123";
In my opinion, no answer covers all edge cases as parsing a float should result in an error.
function parseInteger(value) {
if(value === '') return NaN;
const number = Number(value);
return Number.isInteger(number) ? number : NaN;
}
parseInteger("4") // 4
parseInteger("5aaa") // NaN
parseInteger("4.33333") // NaN
parseInteger("aaa"); // NaN
The easiest way would be to use + like this
const strTen = "10"
const numTen = +strTen // string to number conversion
console.log(typeof strTen) // string
console.log(typeof numTen) // number
I actually needed to "save" a string as an integer, for a binding between C and JavaScript, so I convert the string into an integer value:
/*
Examples:
int2str( str2int("test") ) == "test" // true
int2str( str2int("t€st") ) // "t¬st", because "€".charCodeAt(0) is 8364, will be AND'ed with 0xff
Limitations:
maximum 4 characters, so it fits into an integer
*/
function str2int(the_str) {
var ret = 0;
var len = the_str.length;
if (len >= 1) ret += (the_str.charCodeAt(0) & 0xff) << 0;
if (len >= 2) ret += (the_str.charCodeAt(1) & 0xff) << 8;
if (len >= 3) ret += (the_str.charCodeAt(2) & 0xff) << 16;
if (len >= 4) ret += (the_str.charCodeAt(3) & 0xff) << 24;
return ret;
}
function int2str(the_int) {
var tmp = [
(the_int & 0x000000ff) >> 0,
(the_int & 0x0000ff00) >> 8,
(the_int & 0x00ff0000) >> 16,
(the_int & 0xff000000) >> 24
];
var ret = "";
for (var i=0; i<4; i++) {
if (tmp[i] == 0)
break;
ret += String.fromCharCode(tmp[i]);
}
return ret;
}
String to Number in JavaScript:
Unary + (most recommended)
+numStr is easy to use and has better performance compared with others
Supports both integers and decimals
console.log(+'123.45') // => 123.45
Some other options:
Parsing Strings:
parseInt(numStr) for integers
parseFloat(numStr) for both integers and decimals
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
JavaScript Functions
Math functions like round(numStr), floor(numStr), ceil(numStr) for integers
Number(numStr) for both integers and decimals
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
Unary Operators
All basic unary operators, +numStr, numStr-0, 1*numStr, numStr*1, and numStr/1
All support both integers and decimals
Be cautious about numStr+0. It returns a string.
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // =>3.3
console.log('123.123'+0, typeof ('123.123' + 0)) // => 123.1230 string
Bitwise Operators
Two tilde ~~numStr or left shift 0, numStr<<0
Supports only integers, but not decimals
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
// Parsing
console.log(parseInt('123.456')) // => 123
console.log(parseFloat('123')) // => 123
// Function
console.log(Math.floor('123')) // => 123
console.log(Math.round('123.456')) // => 123
console.log(Math.ceil('123.454')) // => 124
console.log(Number('123.123')) // => 123.123
// Unary
console.log(+'123') // => 123
console.log('002'-0) // => 2
console.log(1*'5') // => 5
console.log('7.7'*1) // => 7.7
console.log(3.3/1) // => 3.3
console.log('123.123'+0, typeof ('123.123'+0)) // => 123.1230 string
// Bitwise
console.log(~~'123') // => 123
console.log('0123'<<0) // => 123
console.log(~~'123.123') // => 123
console.log('123.123'<<0) // => 123
function parseIntSmarter(str) {
// ParseInt is bad because it returns 22 for "22thisendsintext"
// Number() is returns NaN if it ends in non-numbers, but it returns 0 for empty or whitespace strings.
return isNaN(Number(str)) ? NaN : parseInt(str, 10);
}
You can use plus.
For example:
var personAge = '24';
var personAge1 = (+personAge)
then you can see the new variable's type bytypeof personAge1 ; which is number.
Summing the multiplication of digits with their respective power of ten:
i.e: 123 = 100+20+3 = 1100 + 2+10 + 31 = 1*(10^2) + 2*(10^1) + 3*(10^0)
function atoi(array) {
// Use exp as (length - i), other option would be
// to reverse the array.
// Multiply a[i] * 10^(exp) and sum
let sum = 0;
for (let i = 0; i < array.length; i++) {
let exp = array.length - (i+1);
let value = array[i] * Math.pow(10, exp);
sum += value;
}
return sum;
}
The safest way to ensure you get a valid integer:
let integer = (parseInt(value, 10) || 0);
Examples:
// Example 1 - Invalid value:
let value = null;
let integer = (parseInt(value, 10) || 0);
// => integer = 0
// Example 2 - Valid value:
let value = "1230.42";
let integer = (parseInt(value, 10) || 0);
// => integer = 1230
// Example 3 - Invalid value:
let value = () => { return 412 };
let integer = (parseInt(value, 10) || 0);
// => integer = 0
Another option is to double XOR the value with itself:
var i = 12.34;
console.log('i = ' + i);
console.log('i ⊕ i ⊕ i = ' + (i ^ i ^ i));
This will output:
i = 12.34
i ⊕ i ⊕ i = 12
I only added one plus(+) before string and that was solution!
+"052254" // 52254
Number()
Number(" 200.12 ") // Returns 200.12
Number("200.12") // Returns 200.12
Number("200") // Returns 200
parseInt()
parseInt(" 200.12 ") // Return 200
parseInt("200.12") // Return 200
parseInt("200") // Return 200
parseInt("Text information") // Returns NaN
parseFloat()
It will return the first number
parseFloat("200 400") // Returns 200
parseFloat("200") // Returns 200
parseFloat("Text information") // Returns NaN
parseFloat("200.10") // Return 200.10
Math.floor()
Round a number to the nearest integer
Math.floor(" 200.12 ") // Return 200
Math.floor("200.12") // Return 200
Math.floor("200") // Return 200
function doSth(){
var a = document.getElementById('input').value;
document.getElementById('number').innerHTML = toNumber(a) + 1;
}
function toNumber(str){
return +str;
}
<input id="input" type="text">
<input onclick="doSth()" type="submit">
<span id="number"></span>
This (probably) isn't the best solution for parsing an integer, but if you need to "extract" one, for example:
"1a2b3c" === 123
"198some text2hello world!30" === 198230
// ...
this would work (only for integers):
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (!isNaN(str[i - 1])) {
result += parseInt(str[i - 1]) * factor
factor *= 10
}
}
return result
}
console.log(extractInteger(str))
Of course, this would also work for parsing an integer, but would be slower than other methods.
You could also parse integers with this method and return NaN if the string isn't a number, but I don't see why you'd want to since this relies on parseInt internally and parseInt is probably faster.
var str = '3a9b0c3d2e9f8g'
function extractInteger(str) {
var result = 0;
var factor = 1
for (var i = str.length; i > 0; i--) {
if (isNaN(str[i - 1])) return NaN
result += parseInt(str[i - 1]) * factor
factor *= 10
}
return result
}
console.log(extractInteger(str))

packed structure size in C, is this correct?

I found it in some exsiting code, it looks some problems, but the code works fine, can you help if this piece of code has any tricking things in.
why ignore two unsigned when calculate the size of the structure?
tmsg_sz = sizeof(plfm_xml_header_t) + sizeof(oid_t) + sizeof(char*)
+ sizeof(unsigned) + sizeof(snmp_varbind_t)*5 ;
tmsg = (snmp_trap_t*) malloc(tmsg_sz);
if (!tmsg) {
PRINTF("malloc failed \n");
free(trap_msg);
return -1;
}
memset (tmsg, 0, tmsg_sz);
tmsg->hdr.type = PLFM_SNMPTRAP_MSG;
copy_oid_oidt(clog_msg_gen_notif_oid, OID_LENGTH(clog_msg_gen_notif_oid), &tmsg->oid);
tmsg->trap_type = SNMP_TRAP_ENTERPRISESPECIFIC;
tmsg->trap_specific = 1;
tmsg->trapmsg = strdup("Trap Message");
tmsg->numofvar = 5;
build_snmp_varbind(&(tmsg->vars[0]), facility, STR_DATA_TYPE, sizeof(facility)+1, clog_hist_facility_oid, 14);
build_snmp_varbind(&(tmsg->vars[1]), &sev, U32_DATA_TYPE, sizeof(sev),clog_hist_severity_oid, 14);
build_snmp_varbind(&(tmsg->vars[2]), name, STR_DATA_TYPE, sizeof(name)+1, clog_hist_msgname_oid, 14);
build_snmp_varbind(&(tmsg->vars[3]), trap_msg, STR_DATA_TYPE, strlen(trap_msg)+1,clog_hist_msgtext_oid, 14);
// get system uptime
long uptime = get_uptime();
build_snmp_varbind(&(tmsg->vars[4]), (long*)&uptime, TMR_DATA_TYPE, sizeof(uptime),clog_hist_timestamp_oid, 14);
typedef struct snmp_trap_s {
plfm_xml_header_t hdr;
oid_t oid; /* trap oid */
unsigned trap_type;
unsigned trap_specific;
char *trapmsg; /* text message for this trap */
unsigned numofvar;
snmp_varbind_t vars[0];
} __attribute__((__packed__)) snmp_trap_t;
Compilers try hard to put multibyte data aligned in various ways. For example, an int variable, in an architecture where sizeof int == 4, may need to be placed in a location divisible by 4. This may be a hard requirement, or this may just make the system more efficient; it depends on the computer. So, consider
typedef struct combo {
char c;
int i;
} combo;
Depending on the architecture, sizeof combo may be 5, 6, or most often 8. Swap the two members, and the size should be 5.
typedef struct combo2 {
int i;
char c;
} combo2;
However, an array of combo2s may have a size you do not expect:
combo2 cb[2];
The size of cb could very well be 16, as 3 bytes of wasted space follow combo2[0] and combo2[1]. This lets combo2[1].i start at a location divisible by 4.
A recommendation is to order the members of a structure by size; the 8-byte members should precede the 4-byte members, then the 2-byte members, then the 1-byte members. Of course, you have to be aware of typical sizes, and you can't be working on an oddball architecture where characters are not packed into larger words. Cray? cough-cough.

AudioQueue Recording Audio Sample

I am currently in the process of building an application that reads in audio from my iPhone's microphone, and then does some processing and visuals. Of course I am starting with the audio stuff first, but am having one minor problem.
I am defining my sampling rate to be 44100 Hz and defining my buffer to hold 4096 samples. Which is does. However, when I print this data out, copy it into MATLAB to double check accuracy, the sample rate I have to use is half of my iPhone defined rate, or 22050 Hz, for it to be correct.
I think it has something to do with the following code and how it is putting 2 bytes per packet, and when I am looping through the buffer, the buffer is spitting out the whole packet, which my code assumes is a single number. So what I am wondering is how to split up those packets and read them as individual numbers.
- (void)setupAudioFormat {
memset(&dataFormat, 0, sizeof(dataFormat));
dataFormat.mSampleRate = kSampleRate;
dataFormat.mFormatID = kAudioFormatLinearPCM;
dataFormat.mFramesPerPacket = 1;
dataFormat.mChannelsPerFrame = 1;
// dataFormat.mBytesPerFrame = 2;
// dataFormat.mBytesPerPacket = 2;
dataFormat.mBitsPerChannel = 16;
dataFormat.mReserved = 0;
dataFormat.mBytesPerPacket = dataFormat.mBytesPerFrame = (dataFormat.mBitsPerChannel / 8) * dataFormat.mChannelsPerFrame;
dataFormat.mFormatFlags =
kLinearPCMFormatFlagIsSignedInteger |
kLinearPCMFormatFlagIsPacked;
}
If what I described is unclear, please let me know. Thanks!
EDIT
Adding the code that I used to print the data
float *audioFloat = (float *)malloc(numBytes * sizeof(float));
int *temp = (int*)inBuffer->mAudioData;
int i;
float power = pow(2, 31);
for (i = 0;i<numBytes;i++) {
audioFloat[i] = temp[i]/power;
printf("%f ",audioFloat[i]);
}
I found the problem with what I was doing. It was a c pointer issue, and since I have never really programmed in C before, I of course got them wrong.
You can not directly cast inBuffer->mAudioData to an int array. So what I simply did was the following
SInt16 *buffer = malloc(sizeof(SInt16)*kBufferByteSize);
buffer = inBuffer->mAudioData;
This worked out just fine and now my data is of correct length and the data is represented properly.
I saw your answer, there also is an underlying issue which gives wrong sample data bytes which is because of an endian issue of bytes being swapped.
-(void)feedSamplesToEngine:(UInt32)audioDataBytesCapacity audioData:(void *)audioData {
int sampleCount = audioDataBytesCapacity / sizeof(SAMPLE_TYPE);
SAMPLE_TYPE *samples = (SAMPLE_TYPE*)audioData;
//SAMPLE_TYPE *sample_le = (SAMPLE_TYPE *)malloc(sizeof(SAMPLE_TYPE)*sampleCount );//for swapping endians
std::string shorts;
double power = pow(2,10);
for(int i = 0; i < sampleCount; i++)
{
SAMPLE_TYPE sample_le = (0xff00 & (samples[i] << 8)) | (0x00ff & (samples[i] >> 8)) ; //Endianess issue
char dataInterim[30];
sprintf(dataInterim,"%f ", sample_le/power); // normalize it.
shorts.append(dataInterim);
}

Three boolean values saved in one tinyint

probably a simple question but I seem to be suffering from programmer's block. :)
I have three boolean values: A, B, and C. I would like to save the state combination as an unsigned tinyint (max 255) into a database and be able to derive the states from the saved integer.
Even though there are only a limited number of combinations, I would like to avoid hard-coding each state combination to a specific value (something like if A=true and B=true has the value 1).
I tried to assign values to the variables so (A=1, B=2, C=3) and then adding, but I can't differentiate between A and B being true from i.e. only C being true.
I am stumped but pretty sure that it is possible.
Thanks
Binary maths I think. Choose a location that's a power of 2 (1, 2, 4, 8 etch) then you can use the 'bitwise and' operator & to determine the value.
Say A = 1, B = 2 , C= 4
00000111 => A B and C => 7
00000101 => A and C => 5
00000100 => C => 4
then to determine them :
if( val & 4 ) // same as if (C)
if( val & 2 ) // same as if (B)
if( val & 1 ) // same as if (A)
if((val & 4) && (val & 2) ) // same as if (C and B)
No need for a state table.
Edit: to reflect comment
If the tinyint has a maximum value of 255 => you have 8 bits to play with and can store 8 boolean values in there
binary math as others have said
encoding:
myTinyInt = A*1 + B*2 + C*4 (assuming you convert A,B,C to 0 or 1 beforehand)
decoding
bool A = myTinyInt & 1 != 0 (& is the bitwise and operator in many languages)
bool B = myTinyInt & 2 != 0
bool C = myTinyInt & 4 != 0
I'll add that you should find a way to not use magic numbers. You can build masks into constants using the Left Logical/Bit Shift with a constant bit position that is the position of the flag of interest in the bit field. (Wow... that makes almost no sense.) An example in C++ would be:
enum Flags {
kBitMask_A = (1 << 0),
kBitMask_B = (1 << 1),
kBitMask_C = (1 << 2),
};
uint8_t byte = 0; // byte = 0b00000000
byte |= kBitMask_A; // Set A, byte = 0b00000001
byte |= kBitMask_C; // Set C, byte = 0b00000101
if (byte & kBitMask_A) { // Test A, (0b00000101 & 0b00000001) = T
byte &= ~kBitMask_A; // Clear A, byte = 0b00000100
}
In any case, I would recommend looking for Bitset support in your favorite programming language. Many languages will abstract the logical operations away behind normal arithmetic or "test/set" operations.
Need to use binary...
A = 1,
B = 2,
C = 4,
D = 8,
E = 16,
F = 32,
G = 64,
H = 128
This means A + B = 3 but C = 4. You'll never have two conflicting values. I've listed the maximum you can have for a single byte, 8 values or (bits).