Related
I'm extracting frames (5 frames) from a video (car1.mp4). After that displaying the num of rows (and columns).
And then calculating the sum of pixel values of rows and columns of each frame. Finally plotting the graph between the number of columns (or rows) vs magnitude. Below is my code:
clear all
close all
clc
video=VideoReader('car1.mp4');
numFrames = video.NumberOfFrames;
for i = 1:1:5
frames = read(video,i);
imwrite(frames,['image' int2str(i), '.jpg'])
frames = imresize(frames,[100 150]);
sz = size(frames);
numRows = sz(1);
disp(numRows)
numCols = sz(2);
disp(numCols)
rm = numRows*255;
for j = 1:numRows
sumr(j)=0;
for k = 1:numCols
pixels1 = impixel(frames,k,j);
sumr(j)=sumr(j)+pixels1(1);
end
end
s1 = rm./sumr;
plot(s1)
xlabel({'Horizontal Projection','(no. of columns)'})
ylabel('Magnitude')
rc = numCols*255;
for u = 1:numCols
sumc(u)=0;
for v = 1:numRows
pixels2 = impixel(frames,v,u);
sumc(u)=sumc(u)+pixels2(1);
end
end
s2 = rc./sumc;
plot(s2)
xlabel({'Vertical Projection','(no. of rows)'})
ylabel('Magnitude')
end
The main problem is, there are five frames extracting from the video but it shows output (plot between projection vs magnitude) of only one frame. I'm using for loop so that it shows each and every frame's output (plot between projection vs magnitude), but not showing. And the other problem is why it shows only one projection either Horizontal projection or Vertical projection?
Thanks in advance:)
What I want to is:
I got folder with 32 txt files and 1 excle file, each file contain some data in two columns: time, level.
I already managed to pull the data from the folder and open each file in Matlab and get the data from it. What I need to do is create plot for each data file.
each of the 32 plots should have:
Change in average over time
Standard deviation
With both of this things I am straggling can't make it work.
also I need to make another plot this time the plot should have the average over each minute from all the 32 files.
here is my code until now:
clc,clear;
myDir = 'my path';
dirInfo = dir([myDir,'*.txt']);
filenames = {dirInfo.name};
N = numel(filenames);
data=cell(N,1);
for i=1:N
fid = fopen([myDir,filenames{i}] );
data{i} = textscan(fid,'%f %f','headerlines',2);
fclose(fid);
temp1=data{i,1};
time=temp1{1};
level=temp1{2};
Average(i)=mean(level(1:find(time>60)));
AverageVec=ones(length(time),1).*Average(i);
Standard=std(level);
figure(i);
plot(time,level);
xlim([0 60]);
hold on
plot(time, AverageVec);
hold on
plot(time, Standard);
legend('Level','Average','Standard Deviation')
end
the main problam with this code is that i get only average over all the 60 sec not moving average, and the standard deviation returns nothing.
few things you need to know:
*temp1 is 1x2 cell
*time and level are 22973x1 double.
Apperently you need an alternative to movmean and movstd since they where introduced in 2016a. I combined the suggestion from #bla with two loops that correct for the edge effects.
function [movmean,movstd] = moving_ms(vec,k)
if mod(k,2)==0,k=k+1;end
L = length(vec);
movmean=conv(vec,ones(k,1)./k,'same');
% correct edges
n=(k-1)/2;
movmean(1) = mean(vec(1:n+1));
N=n;
for ct = 2:n
movmean(ct) = movmean(ct-1) + (vec(ct+n) - movmean(ct-1))/N;
N=N+1;
end
movmean(L) = mean(vec((L-n):L));
N=n;
for ct = (L-1):-1:(L-n)
movmean(ct) = movmean(ct+1) + (vec(ct-n) - movmean(ct+1))/N;
N=N+1;
end
%mov variance
movstd = nan(size(vec));
for ct = 1:n
movstd(ct) = sum((vec(1:n+ct)-movmean(ct)).^2);
movstd(ct) = movstd(ct)/(n+ct-1);
end
for ct = n+1:(L-n)
movstd(ct) = sum((vec((ct-n):(ct+n))-movmean(ct)).^2);
movstd(ct) = movstd(ct)/(k-1);
end
for ct = (L-n):L
movstd(ct) = sum((vec((ct-n):L)-movmean(ct)).^2);
movstd(ct) = movstd(ct)/(L-ct+n);
end
movstd=sqrt(movstd);
Someone with matlab >=2016a can compare them using:
v=rand(1,1E3);m1 = movmean(v,101);s1=movstd(v,101);
[m2,s2] = moving_ms(v,101);
x=1:1E3;figure(1);clf;
subplot(1,2,1);plot(x,m1,x,m2);
subplot(1,2,2);plot(x,s1,x,s2);
It should show a single red line since the blue line is overlapped.
I'm working on this function which gets axis handler and data, and is supposed to plot it correctly in the axis. The function is called in for loop. It's supposed to draw the multiple data in one figure. My resulted figure is shown below.
There are only two correctly plotted graphs (those with four colors). Others miss areas plotted before the final area (red area is the last plotted area in each graph). But the script is same for every axis. So where can be the mistake? The whole function is written below.
function [] = powerSpectrumSmooth(axis,signal,fs)
N= length(signal);
samplesPer1Hz = N/fs;
delta = int16(3.5*samplesPer1Hz); %last sample of delta frequncies
theta = int16(7.5*samplesPer1Hz); %last sample of theta frequncies
alpha = int16(13*samplesPer1Hz); %last sample of alpha frequncies
beta = int16(30*samplesPer1Hz); %last sample of beta frequncies
x=fft(double(signal));
powerSpectrum = 20*log10(abs(real(x)));
smoothPS=smooth(powerSpectrum,51);
PSmin=min(powerSpectrum(1:beta));
y1=[(smoothPS(1:delta)); zeros(beta-delta,1)+PSmin];
y2=[zeros(delta-1,1)+PSmin; (smoothPS(delta:theta)); zeros(beta-theta,1)+PSmin];
y3=[zeros(theta-1,1)+PSmin; (smoothPS(theta:alpha)); zeros(beta-alpha,1)+PSmin];
y4=[zeros(alpha-1,1)+PSmin; (smoothPS(alpha:beta))];
a1=area(axis,1:beta,y1);
set(a1,'FaceColor','yellow')
hold on
a2=area(axis,1:beta,y2);
set(a2,'FaceColor','blue')
a3=area(axis,1:beta,y3);
set(a3,'FaceColor','green')
a4=area(axis,1:beta,y4);
set(a4,'FaceColor','red')
ADDED
And here is the function which calls the function above.
function [] = drawPowerSpectrum(axesContainer,dataContainer,fs)
size = length(axesContainer);
for l=1:size
powerSpectrumSmooth(axesContainer{l},dataContainer{l},fs)
set(axesContainer{l},'XTickLabel','')
set(axesContainer{l},'YTickLabel','')
uistack(axesContainer{l}, 'top');
end
ADDED 29th July
Here is a script which reproduces the error, so you can run it in your computer. Before running it again you might need to clear variables.
len = 9;
axesContainer = cell(len,1);
x = [0.1,0.4,0.7,0.1,0.4,0.7,0.1,0.4,0.7];
y = [0.1,0.1,0.1,0.4,0.4,0.4,0.7,0.7,0.7];
figure(1)
for i=1:len
axesContainer{i} = axes('Position',[x(i),y(i),0.2,0.2]);
end
dataContainer = cell(len,1);
N = 1500;
for i=1:len
dataContainer{i} = rand(1,N)*100;
end
for l=1:len
y1=[(dataContainer{l}(1:N/4)) zeros(1,3*N/4)];
y2=[zeros(1,N/4) (dataContainer{l}(N/4+1:(2*N/4))) zeros(1,2*N/4)];
y3=[zeros(1,2*N/4) (dataContainer{l}(2*N/4+1:3*N/4)) zeros(1,N/4)];
y4=[zeros(1,3*N/4) (dataContainer{l}(3*N/4+1:N))];
axes=axesContainer{l};
a1=area(axes,1:N,y1);
set(a1,'FaceColor','yellow')
hold on
a2=area(axes,1:N,y2);
set(a2,'FaceColor','blue')
hold on
a3=area(axes,1:N,y3);
set(a3,'FaceColor','green')
hold on
a4=area(axes,1:N,y4);
set(a4,'FaceColor','red')
set(axes,'XTickLabel','')
set(axes,'YTickLabel','')
end
My result of this script is plotted below:
Again only one picture contains all areas.
It looks like that every call to plot(axes,data) deletes whatever was written in axes.
Important note: Do not use a variable name the same as a function. Do not call something sin ,plot or axes!! I changed it to axs.
To solve the problem I just used the classic subplot instead of creating the axes as you did:
len = 9;
axesContainer = cell(len,1);
x = [0.1,0.4,0.7,0.1,0.4,0.7,0.1,0.4,0.7];
y = [0.1,0.1,0.1,0.4,0.4,0.4,0.7,0.7,0.7];
figure(1)
dataContainer = cell(len,1);
N = 1500;
for i=1:len
dataContainer{i} = rand(1,N)*100;
end
for l=1:len
y1=[(dataContainer{l}(1:N/4)) zeros(1,3*N/4)];
y2=[zeros(1,N/4) (dataContainer{l}(N/4+1:(2*N/4))) zeros(1,2*N/4)];
y3=[zeros(1,2*N/4) (dataContainer{l}(2*N/4+1:3*N/4)) zeros(1,N/4)];
y4=[zeros(1,3*N/4) (dataContainer{l}(3*N/4+1:N))];
axs=subplot(3,3,l);
a1=area(axs,1:N,y1);
set(a1,'FaceColor','yellow')
hold on
a2=area(axs,1:N,y2);
set(a2,'FaceColor','blue')
hold on
a3=area(axs,1:N,y3);
set(a3,'FaceColor','green')
hold on
a4=area(axs,1:N,y4);
set(a4,'FaceColor','red')
set(axs,'XTickLabel','')
set(axs,'YTickLabel','')
axis tight % this is to beautify it.
end
As far as I know, you can still save the axs variable in an axescontainer and then modify the properties you want (like location).
I found out how to do what I needed.
len = 8;
axesContainer = cell(len,1);
x = [0.1,0.4,0.7,0.1,0.4,0.7,0.1,0.4];
y = [0.1,0.1,0.1,0.4,0.4,0.4,0.7,0.7];
figure(1)
for i=1:len
axesContainer{i} = axes('Position',[x(i),y(i),0.2,0.2]);
end
dataContainer = cell(len,1);
N = 1500;
for i=1:len
dataContainer{i} = rand(1,N)*100;
end
for l=1:len
y1=[(dataContainer{l}(1:N/4)) zeros(1,3*N/4)];
y2=[zeros(1,N/4) (dataContainer{l}(N/4+1:(2*N/4))) zeros(1,2*N/4)];
y3=[zeros(1,2*N/4) (dataContainer{l}(2*N/4+1:3*N/4)) zeros(1,N/4)];
y4=[zeros(1,3*N/4) (dataContainer{l}(3*N/4+1:N))];
axes=axesContainer{l};
Y=[y1',y2',y3',y4'];
a=area(axes,Y);
set(axes,'XTickLabel','')
set(axes,'YTickLabel','')
end
The area is supposed to work with matrices like this. The tricky part is, that the signal in every next column is not plotted absolutely, but relatively to the data in previous column. That means, if at time 1 the data in first column has value 1 and data in second column has value 4, the second column data is ploted at value 5. Source: http://www.mathworks.com/help/matlab/ref/area.html
I need to create a GUI in Matlab. It requires me to identify the spots for two images, and calculate the distance between them.
I have obtained the code for finding and encircling a single spot. It is as follows:
function [meanx,meany] = centroid(pic)
[x,y,z] = size(pic);
if(z==1)
;
else
pic = rgb2gray(pic);
end
% N=2;
% image = interp2(double(pic),N,'spline');
image = sort(sort(pic,1),2);
image =reshape(image,1,numel(image));
i=0;
while(i<3)
if(image(end)==image(end-1))
image(end)=[];
else
image(end)=[];
i=i+1;
end
end
threshold = image(end);
pic2 =(pic>=threshold);
pic=(pic-threshold).*uint8(pic2);
% % image=(pic-threshold+1).*uint8(image); %minus threshold
[rows,cols] = size(pic);
x = ones(rows,1)*[1:cols];
y = [1:rows]'*ones(1,cols);
area = sum(sum(pic));
if area ~= 0
meanx = sum(sum(double(pic).*x))/area;
meany = sum(sum(double(pic).*y))/area;
else
meanx = cols/2;
meany = rows/2;
end
However, I need it to work for multiple spots as shown below :
http://imgur.com/oEe0mRV,UAnbH5y#0
http://imgur.com/oEe0mRV,UAnbH5y#1
So far, I have come up with this, but it only circles separate spots and not all together.
PLEASE HELP - I need to encircle at least 10X10 spots and store their values, and do this for two images as shown above, and find the distance between them!
img1 = imread('r0.bmp');
centroidmat=zeros(10,10,2);
for numx=1:2
for numy=1:2
single_spot=img1((numx*220+780):((numx+1)*220+780),(numy*220+1272):((numy+1)*220+1272),:);
figure
imshow(single_spot);
figure
[cx,cy] = centroid(single_spot);
centroidmat(numx,numy,1)=cx;
centroidmat(numx,numy,2)=cy;
imshow(single_spot);
hold on;
plot(cx,cy,'og')
end
end
Please HELP GUYS! Any help is appreciated!
Would this work ? -
centroidmat=zeros(10,10,2);
for numx=1:2
for numy=1:2
single_spot=img1((numx*220+780):((numx+1)*220+780),(numy*220+1272):((numy+1)*220+1272),:);
[cx,cy] = centroid(single_spot);
centroidmat(numx,numy,1)=cx;
centroidmat(numx,numy,2)=cy;
figure,
imshow(single_spot);
hold on;
plot(cx,cy,'og')
end
end
I have only removed the redundant figure and imshow(single_spot); at the start of the loop, as they appear again later on inside the same loop.
I have the following code, pasted below. I would like to change it to only average the 10 most recently filtered images and not the entire group of filtered images. The line I think I need to change is: Yout(k,p,q) = (Yout(k,p,q) + (y.^2))/2;, but how do I do it?
j=1;
K = 1:3600;
window = zeros(1,10);
Yout = zeros(10,column,row);
figure;
y = 0; %# Preallocate memory for output
%Load one image
for i = 1:length(K)
disp(i)
str = int2str(i);
str1 = strcat(str,'.mat');
load(str1);
D{i}(:,:) = A(:,:);
%Go through the columns and rows
for p = 1:column
for q = 1:row
if(mean2(D{i}(p,q))==0)
x = 0;
else
if(i == 1)
meanvalue = mean2(D{i}(p,q));
end
%Calculate the temporal mean value based on previous ones.
meanvalue = (meanvalue+D{i}(p,q))/2;
x = double(D{i}(p,q)/meanvalue);
end
%Filtering for 10 bands, based on the previous state
for k = 1:10
[y, ZState{k}] = filter(bCoeff{k},aCoeff{k},x,ZState{k});
Yout(k,p,q) = (Yout(k,p,q) + (y.^2))/2;
end
end
end
% for k = 2:10
% subplot(5,2,k)
% subimage(Yout(k)*5000, [0 100]);
% colormap jet
% end
% pause(0.01);
end
disp('Done Loading...')
The best way to do this (in my opinion) would be to use a circular-buffer to store your images. In a circular-, or ring-buffer, the oldest data element in the array is overwritten by the newest element pushed in to the array. The basics of making such a structure are described in the short Mathworks video Implementing a simple circular buffer.
For each iteration of you main loop that deals with a single image, just load a new image into the circular-buffer and then use MATLAB's built in mean function to take the average efficiently.
If you need to apply a window function to the data, then make a temporary copy of the frames multiplied by the window function and take the average of the copy at each iteration of the loop.
The line
Yout(k,p,q) = (Yout(k,p,q) + (y.^2))/2;
calculates a kind of Moving Average for each of the 10 bands over all your images.
This line calculates a moving average of meanvalue over your images:
meanvalue=(meanvalue+D{i}(p,q))/2;
For both you will want to add a buffer structure that keeps only the last 10 images.
To simplify it, you can also just keep all in memory. Here is an example for Yout:
Change this line: (Add one dimension)
Yout = zeros(3600,10,column,row);
And change this:
for q = 1:row
[...]
%filtering for 10 bands, based on the previous state
for k = 1:10
[y, ZState{k}] = filter(bCoeff{k},aCoeff{k},x,ZState{k});
Yout(i,k,p,q) = y.^2;
end
YoutAvg = zeros(10,column,row);
start = max(0, i-10+1);
for avgImg = start:i
YoutAvg(k,p,q) = (YoutAvg(k,p,q) + Yout(avgImg,k,p,q))/2;
end
end
Then to display use
subimage(Yout(k)*5000, [0 100]);
You would do sth. similar for meanvalue