Swift protocol settable property through a read-only property [duplicate] - swift

This question already has an answer here:
Swift: Failed to assign value to a property of protocol?
(1 answer)
Closed 6 years ago.
Can someone please tell me why Swift has to call the setter of a property when it's only being used to access an object (a protocol) in order to set one of its properties? This first example shows the error I get if I don't declare the indirect object as settable:
protocol AProtocol {
var name: String { get set }
}
class AnImplementation: AProtocol {
var name = ""
}
class AParent {
var test = AnImplementation()
}
class AChild {
var parent: AParent!
var test: AProtocol {
get { return parent.test }
// Note: Not settable
}
}
var parent = AParent()
var child = AChild()
child.parent = parent
child.test.name = "Hello world!" // Error: Cannot assign to property : 'test' is a get-only property
print(child.test.name)
If I give it a setter, it compiles and works but it calls the setter:
protocol AProtocol {
var name: String { get set }
}
class AnImplementation: AProtocol {
var name = ""
}
class AParent {
var test = AnImplementation()
}
class AChild {
var parent: AParent!
var test: AProtocol {
get { return parent.test }
set(newTest) { print("Shouldn't be here!") }
}
}
var parent = AParent()
var child = AChild()
child.parent = parent
child.test.name = "Hello world!"
print(child.test.name)
Output is:
Shouldn't be here!
Hello world!
I'm not sure what I'm not understanding here. I assume I can just give it an empty setter, but I'd like to understand the reason for it.
Any information is much appreciated!

Change your protocol declaration to this:
protocol AProtocol:class {
var name: String { get set }
}
Otherwise, it is taken by default as a value type. Changing a value type's property replaces the value type instance (as shown by the setter observer). And you can't do that if the reference is a let reference.

This is probably caused by the fact that the compiler doesn't know whether AChild.test is a class or a value type. With classes there is no problem but with value types assigning to name would also create an assignment to test (value-copy behavior). Marking APProtocol as class protocol will fix the problem.
To expand, when the compiler is not sure whether test is a value or a class type, it will use the following rewrite of child.test.name = "Hello world!":
var tmp = child.test
tmp.test = "Hello world!"
child.test = tmp
because that will work for both class and value types.

Related

Getters and Setters in Swift - Does it make sense to use WillSet and DidSet instead?

I was doing some research about the reasons we should use Get and Set for our properties.
I've noticed 3 main reasons for it
When you want to do/check something before you actually set the
property
When you want to have a property that you can only Get from it
(maybe for security purposes I guess? ), or give it different access
levels.
Hiding the internal representation of the property while exposing a
property using an alternative representation. (which for me doesn't
make a lot of sense since i can access it on the wrong place using
the Set function anyways)
The code below is a example of how you would implement Get and Set for properties in Swift, taking advantage of those 3 points I mentioned:
class Test
{
private var _testSet:String!
private var _testGetOnly:String
var testSet:String{
get{
return _testSet
}
set{
_testSet = newValue + "you forgot this string"
}
}
var testGetOnly:String!{
get{
return _testGetOnly
}
}
init(testSet:String, testGetOnly:String)
{
_testSet = testSet
_testGetOnly = testGetOnly
}
}
But this other example below also take advantage of those points mentioned but instead of using another computed property to return the private property value I just use the willSet and didSet observers
class Test
{
var testGet:String {
willSet{
fatalError("Operation not allowed")
}
}
var testWillSet:String!{
didSet{
self.testWillSet = self.testWillSet + "you forgot this string"
}
}
init(testGet:String, testWillSet:String)
{
self.testGet = testGet
self.testWillSet = testWillSet
}
}
So I'm curious to know what are the ADVANTAGES and DISADVANTAGES of each implementation.
Thanks in advance
Your question boils down to compile time vs. run time error. To address your 3 questions:
Yes, willCheck is your only option here
Readonly properties fall into 2 types: (a) those whose value derive from other properties, for example, their sum; and (b) those that you want to be able to change by yourself, but not by the users. The first type truly have no setter; the second type has a public getter and a private setter. The compiler can help you check for that and the program will not compile. If you throw a fatalError in didSet you get a runtime error and your application will crash.
There can be state objects that you don't want the user to freely mess with, and yes, you can completely hide those from the users.
Your code first example was too verbose in defining the backing variables - you don't need to do that. To illustrate these points:
class Test
{
// 1. Validate the new value
var mustBeginWithA: String = "A word" {
willSet {
if !newValue.hasPrefix("A") {
fatalError("This property must begin with the letter A")
}
}
}
// 2. A readonly property
var x: Int = 1
var y: Int = 2
var total: Int {
get { return x + y }
}
private(set) var greeting: String = "Hello world"
func changeGreeting() {
self.greeting = "Goodbye world" // Even for private property, you may still
// want to set it, just not allowing the user
// to do so
}
// 3. Hide implementation detail
private var person = ["firstName": "", "lastName": ""]
var firstName: String {
get { return person["firstName"]! }
set { person["firstName"] = newValue }
}
var lastName: String {
get { return person["lastName"]! }
set { person["lastName"] = newValue }
}
var fullName: String {
get { return self.firstName + " " + self.lastName }
set {
let components = newValue.componentsSeparatedByString(" ")
self.firstName = components[0]
self.lastName = components[1]
}
}
}
Usage:
let t = Test()
t.mustBeginWithA = "Bee" // runtime error
t.total = 30 // Won't compile
t.greeting = "Goodbye world" // Won't compile. The compiler does the check for you
// instead of a crash at run time
t.changeGreeting() // OK, greeting now changed to "Goodbye world"
t.firstName = "John" // Users have no idea that they are actually changing
t.lastName = "Smith" // a key in the dictionary and there's no way for them
// to access that dictionary
t.fullName = "Bart Simpsons" // You do not want the user to change the full name
// without making a corresponding change in the
// firstName and lastName. With a custome setter, you
// can update both firstName and lastName to maintain
// consistency
A note about private in Swift 2 vs. Swift 3: if you try this in a Swift 2 playground, you will find t.greeting = "Goodbye world" works just fine. This is because Swift 2 has a strange access level specifier: private means "only accessible within the current file". Separate the class definition and the sample code into different files and Xcode will complain. In Swift 3, that was changed to fileprivate which is both clearer and save the private keyword for something more similar to to Java and .NET

In swift, why can I set a computed property of a polymorphic variable via optional chaining, but not on an unwrapped optional?

I ran into what I think is a strange error in may app. At the bottom of this question is complete code the reproduces what I am seeing in my app, but here is a quick demonstration.
I create two instances of the same class, one is declared as an optional conforming to a protocol the other as an optional of a concrete class
For both I can set the computed property via option chaining ie:
anOptionalInstance?.someComputedProperty = ....
for the concrete version I can set the property by unwrapping the optional
if let anInstance = anOptionalInstance {
anInstance.someComputedProperty = ....
}
For the polymorphic version, I get an error message that says I can't set the property on the instance.
Below is a complete file that reproduces the issue I am seeing.
Can anyone explain what is happening here?
struct MyStruct {
var someMember: String
}
protocol MyProtocol {
var myVar: MyStruct { get set }
}
class MyType: MyProtocol {
var myVar: MyStruct {
get {
return MyStruct(someMember: "some string")
}
set {
println(newValue)
}
}
}
class UsingClass {
var anInstanceOfMyType: MyProtocol?
var anOtherInstanceOfMyType: MyType?
func someMethod() {
anInstanceOfMyType = MyType()
anInstanceOfMyType?.myVar = MyStruct(someMember: "blah")
if let anInstanceOfMyType = anInstanceOfMyType {
// The following line produces this error :Cannot assign to 'myVar' in 'anInstanceOfMyType'
anInstanceOfMyType.myVar = MyStruct(someMember: "blah blah")
}
anOtherInstanceOfMyType = MyType()
anOtherInstanceOfMyType?.myVar = MyStruct(someMember: "blah")
if let anOtherInstanceOfMyType = anOtherInstanceOfMyType {
anOtherInstanceOfMyType.myVar = MyStruct(someMember: "blah blah")
}
}
}
The problem does happen because you are trying to change the property of the constant anInstanceOfMyType which type is MyProtocol.
1. Why anInstanceOfMyType is a constant?
At the first line of UsingClass, anInstanceOfMyType is actually declared as var. However with the Conditional Unwrapping a constant with name anInstanceOfMyType is created, and you are trying to change a property of that constant
2. Ok but anInstanceOfMyType references an instance of a class, so I should be able to change its properties even if it's a constant
Since anInstanceOfMyType has MyProtocol as type, it could contain a struct or a reference an instance of a class.
So the compiler does apply the safer approach and avoid you to change its properties.
Solution
Limit protocol adoption to class types (and not structures or enumerations) by adding the class keyword to a protocol’s inheritance list. The class keyword must always appear first in a protocol’s inheritance list, before any inherited protocols:
protocol MyProtocol: class {
var myVar: MyStruct { get set }
}
or
If MyProtocol is updated to extend AnyObject
protocol MyProtocol : AnyObject {
var myVar: MyStruct { get set }
}
then becomes clear that anInstanceOfMyType must refer an instance of a class, in this case your code does compile.

Specify a settable property/variable in a protocol

I would like my protocol to declare that there is a read/write property available. I have attempted it, but this does not work:
protocol EdibleThing {
var eaten: Bool { get set }
}
class Pickle: EdibleThing { var eaten = false }
class RusticGrapefruit: EdibleThing { var eaten = false }
class Jar {
let contents: [EdibleThing] = [Pickle(), RusticGrapefruit()]
var nextItem: EdibleThing {
return contents.last ?? Pickle() // Lazy pickle generation technology
}
func eat() {
let food = nextItem
food.eaten = true // (!) ERROR: Cannot assign to result of this expression
}
}
What am I doing wrong? I think I've declared that the protocol has a get/set var called eaten, so why can't I set it?
The protocol might be implemented by either classes and structs - that prevents you from changing the internal status of an instance of a class or struct implementing that protocol using an immutable variable.
To fix the problem you have to either declare the food variable as mutable:
func eat() {
var food = nextItem
food.eaten = true // (!) ERROR: Cannot assign to result of this expression
}
or declare the EdibleThing protocol to be implementable by classes only:
protocol EdibleThing : class {
var eaten: Bool { get set }
}
Note that this happens because food is a variable of EdibleThing type - the compiler doesn't know if the actual instance is a value or reference type, so it raises an error. If you make it a variable of a class type, like this:
let food: Pickle = nextItem as! Pickle
the compiler knows without any ambiguity that it's a reference type, and in that case it allows the assignment. But I guess that breaks your app logic... so consider it just as an example
You're mutating food.
Replace let food = nextItem with var food = nextItem
The problem is that you can't mutate a property on a value type defined by let.
Even though both of RusticGrapefruit and Pickle are class implementations (reference types), the protocol could be assigned to a value type like a struct. The compiler detects a potential problem and stops us.
Two solutions:
Change let to var (in my case, this would mean changing a lot of code that refers to objects of this type. Also, I like the semantic value and possible compiler optimizations from let)
Declare the protocol as only valid for classes: protocol EdibleThing: class { }

Swift computed property to return copy of underlying array

I have a model class written in Objective-C that I'm converting to Swift. It contains an NSMutableArray internally, but the method signature for the getter, as well as the actual return value, are NSArray. When called, it creates an immutable copy to return.
Essentially, I want callers to be able to iterate/inspect the container, but not modify it. I have this test snippet:
class Container {
internal var myItems = [String]()
func sayHello() {
"I have: \(myItems)"
}
}
let cont = Container()
cont.myItems.append("Neat") // ["Neat"]
cont.sayHello() // This causes sayHello() to print: "I have: [Neat]"
var isThisACopy = cont.myItems
isThisACopy.append("Huh") // ["Neat", "Huh"]
cont.sayHello() // This ALSO causes sayHello() to print: "I have: [Neat]"
I've been trying to find a way to override the getter for myItems so that it returns an immutable copy, but can't seem to determine how.
Attempt #1
This produces a compiler error: Function produces expected type '_ArrayBuffer<(String)>'; did you mean to call it with '()'?
internal var myItems = [String]() {
var copy = [String]()
for item in ... { // What to use in the ...?
copy.append(item)
}
return copy
}
Attempt #2
This also produces a compiler error, because I'm (understandably) redefining the generated getter Invalid redeclaration of 'myItems()':
internal func myItems() -> [String] {
var copy = [String]()
for item in myItems {
copy.append(item)
}
return copy
}
Try this:
class Container {
private var _myItems: [String] = ["hello"]
internal var myItems: [String] {
return _myItems
}
}
let cont = Container()
cont.myItems.append("Neat") //not allowed
It uses a private stored property and a computed property that returns an immutable copy. It's not possible for a stored property to use custom getters.
A better way to expose mutable properties as immutable:
class Container {
private (set) internal var myItems: [String]
}

How to call instance method inside class using Swift

I am having an issue with calling an instance method within the class itself. If someone can provide me some insight it would be greatly appreciated.
My current code looks like this:
class Rect
{
func printthis() -> String {
return "this is working or what"
}
var toPrint:String = self.printthis()
}
The error I am getting in Xcode is: Use of unresolved identifier 'self'.
What am I missing here?
You can't call an instance method without an instance. The class is merely the template for instances. So i don't what you are trying to do here...
But the answer is no, you cannot call an instance method form the class definition because there is no instance yet.
Perhaps you want to delcare a class method and use that to set an instance variable on creation? If so, you might do that like this:
class Rect {
class func printthis() -> String {
return "this is working or what"
}
var toPrint:String
init() {
toPrint = Rect.printthis()
}
}
var r = Rect()
println(r.toPrint) //-> this is working or what
An instance of a class is not initialized and able to be referenced (even as 'self') until all of its variables have been assigned values.
An option that may work for you is to declare your variable as an implicitly-unwrapped optional, which is assigned nil by default. Then in the class's init method, since all of the variables have been assigned values, you are able to start calling methods on your instance.
class Rect {
var toPrint: String!
init() {
toPrint = printthis()
}
printthis() -> String {
return "this will work"
}
}
the problem is that swift is strict about initing all properties.
you may as a workaround
class Rect
{
func printthis() -> String {
return "this is working or what"
}
var toPrint:String = ""
init() {
toPrint = printthis()
}
}