I am trying to obtain edges from image using canny detector on a 16 gray level image (see image).
Although I am getting the boundaries, some regions present their boundaries disconnected (see image).
Anyone knows how can get the complete boundaries?
In my experience, the Canny edge detection algorithm commonly leaves these kinds of artifacts when it's used to process low-resolution images. As odd as it sounds, you can often achieve much better results by simply increasing the size of the image (for example, using bilinear interpolation). I'm not sure what tools you're using, but in OpenCV, this can be done using a simple resize function. By increasing the width and height by a factor of 4, I can get the following boundaries:
Of course, if you look closely, you'll still see a few small gaps. One possible solution to address that it to use morphological transformations. For example, if I use a morphological close operation on the above image, this will help connect the gaps:
It's worth noting that since your edge image appears to be black edges on white background, you will probably need to use a morphological open operation instead.
Also, note that the low threshold of the Canny operation can also have some influence on addressing the kinds of gaps you're seeing under some circumstances. Before trying more computationally expensive approaches, it's worth trying to lower the low threshold to see if you can pull in the missing edges.
Try use a sharpen filter before the canny contour detector to accentuate the edges.
Related
i need some help with a corner detection.
I printed a checkerboard and created an image of this checkerboard with a webcam. The problem is that the webcam has a low resolution, therefore it do not find all corners. So i enhanced the number of searched corner. Now it finds all corner but different one for the same Corner.
All Points are stored in a matrix therefore i don't know which element depends to which point.
(I can not use the checkerboard function because the fuction is not available in my Matlab Version)
I am currently using the matlab function corner.
My Question:
Is it possible to search the Extrema of all the point clouds to get 1 Point for each Corner? Or has sb an idea what i could do ? --> Please see the attached photo
Thanks for your help!
Looking at the image my guess is that the false positives of the corner detection are caused by compression artifacts introduced by the lossy compression algorithm used by your webcam's image acquisition software. You can clearly spot ringing artifacts around the edges of the checkerboard fields.
You could try two different things:
Check in your webcam's acquisition software whether you can disable the compression or change to a lossless compression
Working with the image you already have, you could try to alleviate the impact of the compression by binarising the image using a simple thresholding operation (which in the case of a checkerboard would not even mean loosing information since the image is intrinsically binary).
In case you want to go for option 2) I would suggest to do the following steps. Let's assume the variable storing your image is called img
look at the distribution of grey values using e.g. the imhist function like so: imhist(img)
Ideally you would see a clean bimodal distribution with no overlap. Choose an intensity value I in the middle of the two peaks
Then simply binarize by assigning img(img<I) = 0; img(img>I) = 255 (assuming img is of type uint8).
Then run the corner algorithm again and see if the outliers have disappeared
Here are some images taken from experiments which show a bubble caused by spheres moving in liquid.
Now I want to get the area of the bubble from every image using Matlab. The first thing come to my mind is edge detection. So I tried using the following code:
A = imread('D:\1.jpg');
BW1 = edge(A,'sobel');
figure, imshow(BW1)
to get the cavity edge of the picture which was then cropped manually, as the picture show, the result (below) doesn't satisfy requirements. Also, I still don't know how to get the area of the bubble.
So, can someone tell me what should I do?
I think you should use background subtraction and try a simple segmentation.
You could use regionprops to get the area of the bubble:
https://www.mathworks.com/help/images/ref/regionprops.html
I feel like it should work pretty well. If you have a hard time obtaining a clean segmentation you could probably improve the experimental setup to increase the contrast of the bubble with respect to the background by choosing a background as dark as possible and using some lateral illumination to leverage the diffusion of the light by the bubble.
Finally the segmentation should be performed in a region of interest (ROI) since you know the bubble is confined within the tank
As for the issue of getting an accurate cavity edges, the computer vision system toolbox has the vision.ForegroundDetector object, which implements a variant of Stauffer and Grimson's GMM background subtraction. The implementation is very fast, leveraging multiple cores. Check out this example of how to use background subtraction.
As for the issue of finding the area of the bubble, use the bwarea command. https://www.mathworks.com/help/images/ref/bwarea.html, it will sum up all the white pixels in the image.
I believe background subtraction is the most efficient method to calculate this bubble area. Note that you may need to use opening and closing techniques afterwards to filter other regions see (imopen imclose) at: https://uk.mathworks.com/help/images/ref/imopen.html , and afterwards, you can apply bwarea to calculate area. You could also use impixelinfo command to compare intensity level of bubbles and other areas, and therefore, threshold image to extract bubbles. It works only when you have same threshold level for all images. Further, it is possible to combine all these techniques which is completely depended on your images to achieve better results.
Other shape-based techniques also can be used to extract bubble region area.
At image i need find "table" - simple rectangle.
Problem is with edge recognition, because potencial photos will be "dark".
I tried edge - sobel, canny, log, .... - recognition and after that Hough transformation and line finding. But this algorithms are not enough for this task.
Something what can help me:
- it is rectangle!, only in perspective view (something like fitting perspective rectangle?)
- that object MUST cover atleast for example 90% of photo (i know i need looking near photo edges)
- that rectangle have fast same color (for example wood dining table)
- i need find atleast "only" 4 corners..(but yes, better will be find the edges of that table)
I know how for example sobel, canny or log algorithms works and Hough as well. And naturally those algorithms fail at dark or non-contrast images. But is there some another method for example based at "fitting"?
Images showing photo i can get (you see it would be dark) and what i need find:
and this is really "nice" picture (without noise). I tested it on more noise pictures and the result was..simply horrible..
Result of this picture with actual algorithm log (with another ones it looks same):
I know image and edge recognition is not simple challenge but are there some new better methods or something like that what i can try to use?
In one of posts in here i found LSD algorithm. It seems very nice descripted and it seems it is recognizing really nice straight lines as well. Do you think it would be better to use it insted of the canny or sobel detection?
Another solution will be corner detection, on my sample images it works better but it recognize too much points and there will problem with time..i will need to connect all the points and "find" the table..
Another solution:
I thought about point to point mapping. That i will have some "virtual" table and try to map that table above with that "virtual" table (simple 2d square in painting :] )..But i think point to point mapping will give me big errors or it will not working.
Does someone have any advice what algorithm use to?
I tried recognize edges in FIJI and then put the edge detected image in matlab, but with hough it works bad as well..:/..
What do you think it would be best to use? In short i need find some algorithm working on non contrast, dark images.
I'd try some modified snakes algorithm:
you parameterize your rectangle with 4 points and initialize them somewhere in the image corners. Then you move the points towards image features using some optimization algorithm (e.g. gradient descent, simulated annealing, etc.).
The image features could be a combination of edge features (e.g. sobel directly or sobel of some gaussian filtered image) to be evaluated on the lines between those four points and corner features to be evaluated at those 4 points.
Additionally you can penalize unlikely rectangles (maybe depending on the angles between the points or on the distance to the image boundary).
I have several images of the pugmark with lots of irrevelant background region. I cannot do intensity based algorithms to seperate background from the foreground.
I have tried several methods. one of them is detecting object in Homogeneous Intensity image
but this is not working with rough texture images like
http://img803.imageshack.us/img803/4654/p1030076b.jpg
http://imageshack.us/a/img802/5982/cub1.jpg
http://imageshack.us/a/img42/6530/cub2.jpg
Their could be three possible methods :
1) if i can reduce the roughness factor of the image and obtain the more smoother texture i.e more flat surface.
2) if i could detect the pugmark like shape in these images by defining rough pugmark shape in the database and then removing the background to obtain image like http://i.imgur.com/W0MFYmQ.png
3) if i could detect the regions with depth and separating them from the background based on difference in their depths.
please tell if any of these methods would work and if yes then how to implement them.
I have a hunch that this problem could benefit from using polynomial texture maps.
See here: http://www.hpl.hp.com/research/ptm/
You might want to consider top-down information in the process. See, for example, this work.
Looks like you're close enough from the pugmark, so I think that you should be able to detect pugmarks using Viola Jones algorithm. Maybe a PCA-like algorithm such as Eigenface would work too, even if you're not trying to recognize a particular pugmark it still can be used to tell whether or not there is a pugmark in the image.
Have you tried edge detection on your image ? I guess it should be possible to finetune Canny edge detector thresholds in order to get rid of the noise (if it's not good enough, low pass filter your image first), then do shape recognition on what remains (you would then be in the field of geometric feature learning and structural matching) Viola Jones and possibly PCA-like algorithm would be my first try though.
I have a stack of images with a bar close to the center. As the stack progresses the bar pivots around one end and the entire stack contains images with the bar rotated at many different angles up to 45 degrees above or below horizontal.
As shown here:
I'm looking for a way to rotate the bar and/or entire image and align everything horizontally before I do my other processing. Ideally this would be done in Matlab / imageJ / ImageMagick. I'm currently trying to work out a method using first Canny edge detection, followed by a Hough transform, followed by an image rotation, but I'm hoping this is a specific case of a more general problem which has already been solved.
If you have the image processing toolbox you can use regionprops with the 'Orientation' property to find the angle.
http://www.mathworks.com/help/images/ref/regionprops.html#bqkf8ji
The problem you are solving is known as image registration or image alignment.
-The first thing you need to due is to treshold the image, so you end up with a black and white image. This will simplify the process.
-Then you need to calculate the mass center of the imgaes and then translate them to match each others centers.
Then you need to rotate the images to matcheach other. This could be done using the principal axis measure. The principal axis will give you the two axis that explain most of the variance in the population. Which will basically give you a vector showing which way your bar is pointing. Then all you need to due is rotate the bars in the same direction.
-After the principal axis transformation you can try rotating the pictues a little bit more in each direction to try and optimise the rotation.
All the way through your translation and rotation you need a measure for showing you how good a fit your tranformation is. This measure can be many thing. If the picture is black and white a simple subtraction of the pictures is enough. Otherwise you can use measures like mutual information.
...you can also look at procrustes analysis see this link for a matlab function http://www.google.dk/search?q=gpa+image+analysis&oq=gpa+image+analysis&sugexp=chrome,mod=9&sourceid=chrome&ie=UTF-8#hl=da&tbo=d&sclient=psy-ab&q=matlab+procrustes+analysis&oq=matlab+proanalysis&gs_l=serp.3.1.0i7i30l4.5399.5883.2.9481.3.3.0.0.0.0.105.253.2j1.3.0...0.0...1c.1.5UpjL3-8aC0&pbx=1&bav=on.2,or.r_gc.r_pw.r_qf.&bvm=bv.1355534169,d.Yms&fp=afcd637d8ae07bde&bpcl=40096503&biw=1600&bih=767
You might want to look into the SIFT transform.
You should take as your image the rectangle that represents a worst case guess for your bar and determine the rotation matrix for that.
See http://www.vlfeat.org/overview/sift.html
Use the StackReg plugin of ImageJ. I'm not 100% sure but I think it already comes installed with FIJI (FIJI Is Just ImageJ).
EDIT: I think I have misread your question. That is not a stack of images you are trying to fix, right? In that case, a simple approach (probably not the most efficient but definetly works), is the following algorithm:
threshold the image (seems easy, your background is always white)
get a long horizontal line as a structuring element and dilate the image with it
rotate the structuring element and keep dilating image, measuring the size of the dilation.
the angle that maximizes it, is the rotation angle you'll need to fix your image.
There are several approaches to this problem as suggested by other answers. One approach possibly similar to what you are already trying, is to use Hough transform. Hough transform is good at detecting line orientations. Combining this with morphological processing and image rotation after detecting the angle you can create a system that corrects for angular variations. The basic steps would be
Use Morphological operations to make the bar a single line blob.
Use Hough transform on this image.
Find the maximum in the transform output and use that to find orientation angle.
Use the angle to fix original image.
A full example which comes with Computer Vision System Toolbox for this method. See
http://www.mathworks.com/help/vision/examples/rotation-correction-1.html
you can try givens or householder transform, I prefer givens.
it require an angle, using cos(angle) and sin(angle) to make the givens matrix.