I am doing a project on plant disease detection. I need to extract diseased parts from images of leafs but I'm not able to separate out diseased regions accurately using k-means. Specifically, the rest of the leaf is visible on the image with the diseased parts segmented. Here is the original image and image after extracting diseased parts:original image image after separating diseased parts
Here is the code I have written
b=imread('12.jpeg');
G=fspecial('gaussian',[200 250],1);
Ig=imfilter(b,G,'same');
figure,imshow(Ig);
conversionform = makecform('srgb2lab');
lab_img = applycform(Ig,conversionform);
figure,imshow(lab_img);
ab = double(lab_img(:,:,2:3));
nrows = size(ab,1);
ncols = size(ab,2);
ab = reshape(ab,nrows*ncols,2);
nColors = 2;
[cluster_idx, cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean', ...,
'Replicates',3);
pixel_labels = reshape(cluster_idx,nrows,ncols);
figure, imshow(pixel_labels,[]), title('image labeled by cluster index');
segmented_images = cell(1,3);
rgb_label = repmat(pixel_labels,[1 1 3]);
for k = 1:nColors
color = lab_img;
color(rgb_label ~= k) = 0;
segmented_images{k} = color;
end
figure, imshow(segmented_images{1}), title('objects in cluster 1');
figure, imshow(segmented_images{2}), title('objects in cluster 2');
e=segmented_images{1};
figure,imshow(e);
conversionform = makecform('lab2srgb');
new_image=applycform(e,conversionform);
figure,imshow(new_image);
I want to extract only the diseased regions using K means clustering. I would be grateful if someone could help me with this. I am using matlab 2009a.
Here is a corrected code that will do what you expect:
function segmented_img = leaf_segmentation( original_img, nclusters )
original_img = im2double(original_img);
smoothed_img = imgaussfilt(original_img,1);
conversionform = makecform('srgb2lab');
lab_img = applycform(smoothed_img,conversionform);
ab_img = lab_img(:,:,2:3);
[nrows,ncols,~] = size(ab_img);
ab_img = reshape(ab_img,nrows*ncols,2);
cluster_idx = kmeans(ab_img,nclusters,'distance','sqEuclidean','Replicates',3);
cluster_img = reshape(cluster_idx,nrows,ncols);
%figure, imagesc(cluster_img), title('Clustering results');
segmented_img = cell(1,nclusters);
for k = 1:nclusters
segmented_img{k} = bsxfun( #times, original_img, cluster_img == k );
end
end
You can call it and visualise the results like so:
segmented = leaf_segmentation( original, 3 );
figure;
subplot(1,3,1), imshow(segmented{1}), title('Cluster 1');
subplot(1,3,2), imshow(segmented{2}), title('Cluster 2');
subplot(1,3,3), imshow(segmented{3}), title('Cluster 3');
Note that the order of the clusters may vary. You can order them a posteriori knowing that the leaf should be mostly green/yellow, and that the background should be mostly black.
Related
I want to find the corners of objects.
I tried the following code:
Vstats = regionprops(BW2,'Centroid','MajorAxisLength','MinorAxisLength',...
'Orientation');
u = [Vstats.Centroid];
VcX = u(1:2:end);
VcY = u(2:2:end);
[VcY id] = sort(VcY); % sorting regions by vertical position
VcX = VcX(id);
Vstats = Vstats(id); % permute according sort
Bv = Bv(id);
Vori = [Vstats.Orientation];
VRmaj = [Vstats.MajorAxisLength]/2;
VRmin = [Vstats.MinorAxisLength]/2;
% find corners of vertebrae
figure,imshow(BW2)
hold on
% C = corner(VER);
% plot(C(:,1), C(:,2), 'or');
C = cell(size(Bv));
Anterior = zeros(2*length(C),2);
Posterior = zeros(2*length(C),2);
for i = 1:length(C) % for each region
cx = VcX(i); % centroid coordinates
cy = VcY(i);
bx = Bv{i}(:,2); % edge points coordinates
by = Bv{i}(:,1);
ux = bx-cx; % move to the origin
uy = by-cy;
[t, r] = cart2pol(ux,uy); % translate in polar coodinates
t = t - deg2rad(Vori(i)); % unrotate
for k = 1:4 % find corners (look each quadrant)
fi = t( (t>=(k-3)*pi/2) & (t<=(k-2)*pi/2) );
ri = r( (t>=(k-3)*pi/2) & (t<=(k-2)*pi/2) );
[rp, ip] = max(ri); % find farthest point
tc(k) = fi(ip); % save coordinates
rc(k) = rp;
end
[xc,yc] = pol2cart(tc+1*deg2rad(Vori(i)) ,rc); % de-rotate, translate in cartesian
C{i}(:,1) = xc + cx; % return to previous place
C{i}(:,2) = yc + cy;
plot(C{i}([1,4],1),C{i}([1,4],2),'or',C{i}([2,3],1),C{i}([2,3],2),'og')
% save coordinates :
Anterior([2*i-1,2*i],:) = [C{i}([1,4],1), C{i}([1,4],2)];
Posterior([2*i-1,2*i],:) = [C{i}([2,3],1), C{i}([2,3],2)];
end
My input image is :
I got the following output image
The bottommost object in the image is not detected properly. How can I correct the code? It fails to work for a rotated image.
You can get all the points from the image, and use kmeans clustering and partition the points into 8 groups. Once partition is done, you have the points in and and you can pick what ever the points you want.
rgbImage = imread('your image') ;
%% crop out the unwanted white background from the image
grayImage = min(rgbImage, [], 3);
binaryImage = grayImage < 200;
binaryImage = bwareafilt(binaryImage, 1);
[rows, columns] = find(binaryImage);
row1 = min(rows);
row2 = max(rows);
col1 = min(columns);
col2 = max(columns);
% Crop
croppedImage = rgbImage(row1:row2, col1:col2, :);
I = rgb2gray(croppedImage) ;
%% Get the white regions
[y,x,val] = find(I) ;
%5 use kmeans clustering
[idx,C] = kmeans([x,y],8) ;
%%
figure
imshow(I) ;
hold on
for i = 1:8
xi = x(idx==i) ; yi = y(idx==i) ;
id1=convhull(xi,yi) ;
coor = [xi(id1) yi(id1)] ;
[id,c] = kmeans(coor,4) ;
plot(coor(:,1),coor(:,2),'r','linewidth',3) ;
plot(c(:,1),c(:,2),'*b')
end
Now we are able to capture the regions..the boundary/convex hull points are in hand. You can do what ever math you want with the points.
Did you solve the problem? I Looked into it and it seems that the rotation given by 'regionprops' seems to be off. To fix that I've prepared a quick solution: I've dilated the image to close the gaps, found 4 most distant peaks of each spine, and then validated if a peak is on the left, or on the right of the centerline (that I have obtained by extrapolating form sorted centroids). This method seems to work for this particular problem.
BW2 = rgb2gray(Image);
BW2 = imbinarize(BW2);
%dilate and erode will help to remove extra features of the vertebra
se = strel('disk',4,4);
BW2_dilate = imdilate(BW2,se);
BW2_erode = imerode(BW2_dilate,se);
sb = bwboundaries(BW2_erode);
figure
imshow(BW2)
hold on
centerLine = [];
corners = [];
for bone = 1:length(sb)
x0 = sb{bone}(:,2) - mean(sb{bone}(:,2));
y0 = sb{bone}(:,1) - mean(sb{bone}(:,1));
%save the position of the centroid
centerLine = [centerLine; [mean(sb{bone}(:,1)) mean(sb{bone}(:,2))]];
[th0,rho0] = cart2pol(x0,y0);
%make sure that the indexing starts at the dip, not at the corner
lowest_val = find(rho0==min(rho0));
rho1 = [rho0(lowest_val:end); rho0(1:lowest_val-1)];
th00 = [th0(lowest_val:end); th0(1:lowest_val-1)];
y1 = [y0(lowest_val:end); y0(1:lowest_val-1)];
x1 = [x0(lowest_val:end); x0(1:lowest_val-1)];
%detect corners, using smooth data to remove noise
[pks,locs] = findpeaks(smooth(rho1));
[pksS,idS] = sort(pks,'descend');
%4 most pronounced peaks are where the corners are
edgesFndCx = x1(locs(idS(1:4)));
edgesFndCy = y1(locs(idS(1:4)));
edgesFndCx = edgesFndCx + mean(sb{bone}(:,2));
edgesFndCy = edgesFndCy + mean(sb{bone}(:,1));
corners{bone} = [edgesFndCy edgesFndCx];
end
[~,idCL] = sort(centerLine(:,1),'descend');
centerLine = centerLine(idCL,:);
%extrapolate the spine centerline
yDatExt= 1:size(BW2_erode,1);
extrpLine = interp1(centerLine(:,1),centerLine(:,2),yDatExt,'spline','extrap');
plot(centerLine(:,2),centerLine(:,1),'r')
plot(extrpLine,yDatExt,'r')
%find edges to the left, and to the right of the centerline
for bone = 1:length(corners)
x0 = corners{bone}(:,2);
y0 = corners{bone}(:,1);
for crn = 1:4
xCompare = extrpLine(y0(crn));
if x0(crn) < xCompare
plot(x0(crn),y0(crn),'go','LineWidth',2)
else
plot(x0(crn),y0(crn),'ro','LineWidth',2)
end
end
end
Solution
skin cancer image
I want to apply K means clustering on grayscale image, code is as follow
im = imread('SSM1_2_orig.jpg');
im = rgb2gray(im);
[idx centroids]=kmeans(double(im(:)),3,'distance','sqEuclidean','Replicates',3);
%imseg = zeros(size(im,1),size(im,2));
%{for i=1:max(idx)
%imseg(idx==i)=i;
%end}
segmented_images = cell(1,3);
for k = 1:3
color = im;
color(im ~= k) = 0;
segmented_images{k} = color;
end
figure(),imshow(segmented_images{1});
figure(),imshow(segmented_images{2});
figure(),imshow(segmented_images{3});
but it gives me the black output only
Here is the working code. Notes:
You are never using the result of the clustering,you are comparing the original pixel values with k, instead of the clustered pixel values idx.
Also, remember to use imshow(____, []) if your images are not [0-1] or [0-255].
im = imread('https://i.stack.imgur.com/ZYp7r.jpg');
im = rgb2gray(im);
[idx, centroids]=kmeans(double(im(:)),3,'distance','sqEuclidean','Replicates',3);
segmented_images = cell(1,3);
for k = 1:3
color = zeros(size(im));
color(idx==k) = im(idx==k);
segmented_images{k} = color;
end
figure(),imshow(segmented_images{1},[]);
figure(),imshow(segmented_images{2},[]);
figure(),imshow(segmented_images{3},[]);
I am trying to extract plankton from a scanned image.
I segmented the plankton using the technique I found here, http://www.mathworks.com/help/images/examples/detecting-a-cell-using-image-segmentation.html
The outline is not bad, however, now I am not sure how to extract the images so each individual plankton can be saved individually. I tried to use labels but there is a lot of noise and it labels every single spec. I am wondering if there is a better way to do this.
Here is my code:
I = imread('plankton_2.jpg');
figure, imshow(I), title('original image');
[~, threshold] = edge(I, 'sobel');
fudgeFactor = .5;
BWs = edge(I,'sobel', threshold * fudgeFactor);
figure, imshow(BWs), title('binary gradient mask');
se90 = strel('line', 3, 90);
se0 = strel('line', 3, 0);
BWsdil = imdilate(BWs, [se90 se0]);
figure, imshow(BWsdil), title('dilated gradient mask');
BWdfill = imfill(BWsdil, 'holes');
figure, imshow(BWdfill);
title('binary image with filled holes');
BWnobord = imclearborder(BWdfill,1);
figure, imshow(BWnobord), title('cleared border image');
seD = strel('diamond',1);
BWfinal = imerode(BWnobord,seD);
BWfinal = imerode(BWfinal,seD);
figure, imshow(BWfinal), title('segmented image');
BWoutline = bwperim(BWfinal);
Segout = I;
Segout(BWoutline) = 0;
figure, imshow(Segout), title('outlined original image');
label = bwlabel(BWfinal);
max(max(label))
for j = 1:max(max(label))
[row, col] = find(label == j);
len = max(row) - min(row)+2;
breadth = max(col)-min(col) +2;
target = uint8(zeros([len breadth]));
sy = min(col)-1;
sx = min(row)-1;
for i = 1:size(row,1)
x = row(i,1)-sx;
y = col(i,1) - sy;
target(x,y)=I(row(i,1),col(i,1));
end
mytitle =strcat('Object Number:',num2str(j));
figure, imshow(target);mytitle;
end
for j = 1:max(max(label))
[row, col] = find(label == j);
len = max(row) - min(row)+2;
breadth = max(col)-min(col) +2;
target = uint8(zeros([len breadth]));
sy = min(col)-1;
sx = min(row)-1;
for i = 1:size(row,1)
x = row(i,1)-sx;
y = col(i,1) - sy;
target(x,y)=I(row(i,1),col(i,1));
end
mytitle =strcat('Object Number:',num2str(j));
figure, imshow(target);mytitle;
end
You should use the regionprops function to filter the detected objects by size and/or shape characteristics.
i'm making image segmentation with self organizing map. the image segement by 3 cluster. Sample image is :
and i have type the matlab code like this bellow :
clear;
clc;
i=imread('DataSet/3.jpg');
I = imresize(i,0.5);
cform = makecform('srgb2lab');
lab_I = applycform(I,cform);
ab = double(lab_I(:,:,2:3));
nrows = size(ab,1);
ncols = size(ab,2);
ab = reshape(ab,nrows*ncols,2);
a = ab(:,1);
b = ab(:,2);
normA = (a-min(a(:))) ./ (max(a(:))-min(a(:)));
normB = (b-min(b(:))) ./ (max(b(:))-min(b(:)));
ab = [normA normB];
newnRows = size(ab,1);
newnCols = size(ab,2);
cluster = 3;
% Max number of iteration
N = 90;
% initial learning rate
eta = 0.3;
% exponential decay rate of the learning rate
etadecay = 0.2;
%random weight
w = rand(2,cluster);
%initial D
D = zeros(1,cluster);
% initial cluster index
clusterindex = zeros(newnRows,1);
% start
for t = 1:N
for data = 1 : newnRows
for c = 1 : cluster
D(c) = sqrt(((w(1,c)-ab(data,1))^2) + ((w(2,c)-ab(data,2))^2));
end
%find best macthing unit
[~, bmuindex] = min(D);
clusterindex(data)=bmuindex;
%update weight
oldW = w(:,bmuindex);
new = oldW + eta * (reshape(ab(data,:),2,1)-oldW);
w(:,bmuindex) = new;
end
% update learning rate
eta= etadecay * eta;
end
%Label Every Pixel in the Image Using the Results from KMEANS
pixel_labels = reshape(clusterindex,nrows,ncols);
%Create Images that Segment the I Image by Color.
segmented_images = cell(1,3);
rgb_label = repmat(pixel_labels,[1 1 3]);
for k = 1:cluster
color = I;
color(rgb_label ~= k) = 0;
segmented_images{k} = color;
end
figure,imshow(segmented_images{1}), title('objects in cluster 1');
figure,imshow(segmented_images{2}), title('objects in cluster 2');
figure,imshow(segmented_images{3}), title('objects in cluster 3');
and after runing the matlab code, there is no image segmentation result. Matlab show 3 figure, Figure 1 show the full image, figure 2 blank, figure 3 blank .
please anyone help me to revise my matlab code, is any wrong code or something?
new = oldW + eta * (reshape(ab(data,:),2,1)-oldW);
This line looks suspicious to me, why you are subtracting old weights here, i dont think this makes any sense there, just remove oldW from there and check your results again.
Thank You
I want to use the line new command of PDE toolbox as Matlab R2015 to restore a noisy image with gaussian noise.
The PDE is:
∇.(( ∇u)/(√(1+|∇u|2))) +(f2)/(u2) = 1 in Ω (∂u)/(∂n)=0 in ∂Ω
Where f is the noisy image and u the restored image.
I tried the following code:
clear
close all
clc
img = 'AA.jpg';
mInputImage = double(imread(img));
mInputImage = rgb2gray(mInputImage);
[numRows, numCols] = size(mInputImage);
Var = 0.04;
Mean = 0;
mInputImageNoisy = imnoise((mInputImage(:,:,1)),'gaussian',Mean, Var);
% reshape the input and noisy images to vectors
mInputImageVector = reshape(mInputImage,numRows*numCols,1);
mInputImageNoisyVector = reshape(mInputImageNoisy,numRows*numCols,1);
Residu1 = norm(mInputImageVector-mInputImageNoisyVector)/norm(mInputImageVector)
RegularisationCoefficient = 0.7*ones((numRows-1)*(numCols-1),1);
mOutputImageVector = mInputImageNoisyVector;
%a = (mInputImageNoisyVector.^2) ./ mOutputImageVector.^3;
f = 1;
rtol = 1e-1;
c = '1./sqrt(1+ux.^2+uy.^2)';
% Create a PDE Model with a single dependent variable
numberOfPDE = 1;
pdem = createpde(numberOfPDE);
g = #squareg;
geometryFromEdges(pdem,g);
% Plot the geometry and display the edge labels for use in the boundary
% condition definition.
figure;
pdegplot(pdem, 'edgeLabels', 'on');
%axis([0 numRows 0 numCols]);
axis([-2 2 -2 2]);
title 'Geometry With Edge Labels Displayed'
b2 = applyBoundaryCondition(pdem,'Edge',[1 2 3 4], 'u', 0);
[p,e,t] = poimesh(g,numRows, numCols);
numCols
pdemesh(p,e,t);
axis equal
for iter = 1: numRows*numRows,
mOutputImageVector(iter) = pdenonlin(pdem,c,...
(mInputImageNoisyVector(iter).^2) ./ mOutputImageVector(iter).^3,...
f,'tol',rtol);
SaveImageVector(iter) = mOutputImageVector;
end
mOutputImage = reshape(SaveImageVector,numRows,numRows);
mOutputImage = uint8(mOutputImage);
figure()
imshow(mOutputImage)