Here is what the data looks like:
{
"_id" : {
"item" : "1",
"state" : "something"
},
"things" : {
"ordered" : 2,
"cost" : 123
}
}
I try to query for all doc of item 1, there are many state for that item. I know i can get that record using db.orders.find({_id:{item:"1", state: "something"}}). But I would like to get all states I try something like db.orders.find({_id:{item:"1", state: {$exists: true}}})
But that doesn't seem to work. What am i doing wrong?
If you want to get the list of all the different states you could use.
db.orders.distinct("_id.state");
If you want to get the list of all the states in your collection
db.orders.find({}, {"_id.state": 1});
I really want to get the things.cost for all the states for a given
item
db.orders.aggregate([
{ $group : {
_id : { item : "$_id.item" , state : "$_id.state"},
cost: { $push : "$things.cost" }
}
}
]);
If you want the sum instead of the elements of the group by use $sum instead of $push
How do i get for certain item?
db.orders.aggregate([
{ $match : { "_id.item" : "YOUR_ID" }},
{ $group : {
_id : { item : "$_id.item" , state : "$_id.state"},
cost: { $push : "$things.cost" }
}
}
]);
Related
It's one of my data as JSON format:
{
"_id" : ObjectId("5bfdb412a80939b6ed682090"),
"accounts" : [
{
"_id" : ObjectId("5bf106eee639bd0df4bd8e05"),
"accountType" : "DDA",
"productName" : "DDA1"
},
{
"_id" : ObjectId("5bf106eee639bd0df4bd8df8"),
"accountType" : "VSA",
"productName" : "VSA1"
},
{
"_id" : ObjectId("5bf106eee639bd0df4bd8df9"),
"accountType" : "VSA",
"productName" : "VSA2"
}
]
}
I want to make a query to get all productName(no duplicate) of accountType = VSA.
I write a mongo query:
db.Collection.distinct("accounts.productName", {"accounts.accountType": "VSA" })
I expect: ['VSA1', 'VSA2']
I get: ['DDA','VSA1', 'VSA2']
Anybody knows why the query doesn't work in distinct?
Second parameter of distinct method represents:
A query that specifies the documents from which to retrieve the distinct values.
But the thing is that you showed only one document with nested array of elements so whole document will be returned for your condition "accounts.accountType": "VSA".
To fix that you have to use Aggregation Framework and $unwind nested array before you apply the filtering and then you can use $group with $addToSet to get unique values. Try:
db.col.aggregate([
{
$unwind: "$accounts"
},
{
$match: {
"accounts.accountType": "VSA"
}
},
{
$group: {
_id: null,
uniqueProductNames: { $addToSet: "$accounts.productName" }
}
}
])
which prints:
{ "_id" : null, "uniqueProductNames" : [ "VSA2", "VSA1" ] }
I have a collection of Projects in where projects are like this:
{
"_id" : ObjectId("57e3e55c638cb8b971"),
"allocInvestor" : "Example Investor",
"fieldFoo" : "foo bar",
"name" : "GTP 3 (Roof Lease)"
}
I want to receive a list of projects grouped by allocInvestor field and only show fields: name and id
If I use aggregate and $group like this:
db.getCollection('projects').aggregate([
{"$group" : {
_id:"$allocInvestor", count:{$sum:1}
}
}
])
I receive a count of project per allocInvestor but I need is to receive the list of allocInvestor with subarray of projects per allocInvestor.
I'm using meteor by the way in case that helps. But I first want to get the query right on mongodb then try for meteor.
You can use $push or $addToSet to create a list of name and _id per every group.
$push allows duplicates and $addToSet does not add an element to the list again, if it is already there.
db.getCollection('projects').aggregate([
{ "$group" : { _id : "$allocInvestor",
count : {$sum : 1},
"idList" : {"$addToSet" : "$_id"},
"nameList" : {"$addToSet":"$name"}
}
}
]);
To get the name and _id data in a single list:
db.getCollection('projects').aggregate([
{ "$group" : { _id : "$allocInvestor", "projects" : {"$addToSet" : {id : "$_id", name: "$name"}}}},
{"$project" : {"_id" : 0, allocInvestor : "$_id", "projects" : 1 }}
]);
Use the $$ROOT operator to reference the entire document and then use project to eliminate the fields that you do not require.
db.projects.aggregate([
{"$group" : {
"_id":"$allocInvestor",
"projects" : {"$addToSet" : "$$ROOT"}
}
},
{"$project" : {
"_id":0,
"allocInvestor":"$_id",
"projects._id":1
"projects.name":1
}
}
])
I want to check if user id exists inside an array field of mongodb (using meteor)
db.posts.find().pretty()
{
"_id" : "hT3ezqEyTaiihoh6Z",
"body" : "hey\n",
"authorId" : "AyJo5nf2Lkdqd6aRh",
"createdAt" : ISODate("2016-05-13T06:19:34.726Z"),
"updatedAt" : ISODate("2016-05-13T06:19:34.726Z"),
"likecount" : 0,
"already_voted" : [ ] }
db.posts.find( { _id:"hT3ezqEyTaiihoh6Z"},{ already_voted: { $in : ["AyJo5nf2Lkdqd6aRh"]} }).count()
1
It gives count value 1 , where as I am expecting it to be 0 .
Your logic is fine. Just the syntax is wrong.
db.posts
.find({
_id: "hT3ezqEyTaiihoh6Z",
already_voted: { $in: ["AyJo5nf2Lkdqd6aRh"] },
})
.count();
This should work.
You can just simply use count method. Don't need to use two operation like Find and then count.
db.posts
.count({
_id: "hT3ezqEyTaiihoh6Z",
already_voted: { $in: ["AyJo5nf2Lkdqd6aRh"] }
});
I would like to query documents based on several criteria and then keep only specific fields. The following query (mongoskin syntax) returns todos for the current user, and filtered by tag:
db.collection('users').find({
_id : db.bson_serializer.ObjectID.createFromHexString(req.user._id.toString())
}, {
todos : {
$elemMatch : {
tags : filterTag
}
}
}
Then I tried to add the projection but the filtering is not done anymore.
db.collection('users').find({
_id : db.bson_serializer.ObjectID.createFromHexString(req.user._id.toString()),
todos : {
$elemMatch : {
tags : filterTag
}
}
}, {
_id : 0,
'todos.value' : 1,
'todos._id' : 1
}
I actually found the solution with aggregate:
db.collection('users').aggregate({
$unwind : '$todos'
}, {
$match : {
_id : db.bson_serializer.ObjectID.createFromHexString(req.user._id.toString()),
'todos.tags' : filterTag
}
}, {
$project : {
_id : 0,
'todos.value' : 1,
'todos._id' : 1
}
}
I'm attempting to store pre-aggregated performance metrics in a sharded mongodb according to this document.
I'm trying to update the minute sub-documents in a record that may or may not exist with an upsert like so (self.collection is a pymongo collection instance):
self.collection.update(query, data, upsert=True)
query:
{ '_id': u'12345CHA-2RU020130304',
'metadata': { 'adaptor_id': 'CHA-2RU',
'array_serial': 12345,
'date': datetime.datetime(2013, 3, 4, 0, 0, tzinfo=<UTC>),
'processor_id': 0}
}
data:
{ 'minute': { '16': { '45': 1.6693091}}}
The problem is that in this case the 'minute' subdocument always only has the last hour: { minute: metric} entry, the minute subdocument does not create new entries for other hours, it's always overwriting the one entry.
I've also tried this with a $set style data entry:
{ '$set': { 'minute': { '16': { '45': 1.6693091}}}}
but it ends up being the same.
What am I doing wrong?
In both of the examples listed you are simply setting a field ('minute')to a particular value, the only reason it is an addition the first time you update is because the field itself does not exist and so must be created.
It's hard to determine exactly what you are shooting for here, but I think what you could do is alter your schema a little so that 'minute' is an array. Then you could use $push to add values regardless of whether they are already present or $addToSet if you don't want duplicates.
I had to alter your document a little to make it valid in the shell, so my _id (and some other fields) are slightly different to yours, but it should still be close enough to be illustrative:
db.foo.find({'_id': 'u12345CHA-2RU020130304'}).pretty()
{
"_id" : "u12345CHA-2RU020130304",
"metadata" : {
"adaptor_id" : "CHA-2RU",
"array_serial" : 12345,
"date" : ISODate("2013-03-18T23:28:50.660Z"),
"processor_id" : 0
}
}
Now let's add a minute field with an array of documents instead of a single document:
db.foo.update({'_id': 'u12345CHA-2RU020130304'}, { $addToSet : {'minute': { '16': {'45': 1.6693091}}}})
db.foo.find({'_id': 'u12345CHA-2RU020130304'}).pretty()
{
"_id" : "u12345CHA-2RU020130304",
"metadata" : {
"adaptor_id" : "CHA-2RU",
"array_serial" : 12345,
"date" : ISODate("2013-03-18T23:28:50.660Z"),
"processor_id" : 0
},
"minute" : [
{
"16" : {
"45" : 1.6693091
}
}
]
}
Then, to illustrate the addition, add a slightly different entry (since I am using $addToSet this is required for a new field to be added:
db.foo.update({'_id': 'u12345CHA-2RU020130304'}, { $addToSet : {'minute': { '17': {'48': 1.6693391}}}})
db.foo.find({'_id': 'u12345CHA-2RU020130304'}).pretty()
{
"_id" : "u12345CHA-2RU020130304",
"metadata" : {
"adaptor_id" : "CHA-2RU",
"array_serial" : 12345,
"date" : ISODate("2013-03-18T23:28:50.660Z"),
"processor_id" : 0
},
"minute" : [
{
"16" : {
"45" : 1.6693091
}
},
{
"17" : {
"48" : 1.6693391
}
}
]
}
I ended up setting the fields like this:
query:
{ '_id': u'12345CHA-2RU020130304',
'metadata': { 'adaptor_id': 'CHA-2RU',
'array_serial': 12345,
'date': datetime.datetime(2013, 3, 4, 0, 0, tzinfo=<UTC>),
'processor_id': 0}
}
I'm setting the metrics like this:
data = {"$set": {}}
for metric in csv:
date_utc = metric['date'].astimezone(pytz.utc)
data["$set"]["minute.%d.%d" % (date_utc.hour,
date_utc.minute)] = float(metric['metric'])
which creates data like this:
{"$set": {'minute.16.45': 1.6693091,
'minute.16.46': 1.566343,
'minute.16.47': 1.22322}}
So that when self.collection.update(query, data, upsert=True) is run it updates those fields.