Swift: Returning a copy of object - swift

I'm need to return a copy of an object using Swift but I can not figure out how to do this.
This how I'll do it in Objective-C:
-(NSArray*) doingSomethingwith
{
NSArray *myArray = #[#"a",#"b",#"c",#"d",];
return [myArray copy];
}
Any of you knows how to do this Swift?
I'll really appreciate your help.

If the contents of the array are value objects, as the constant strings are in your example, then simply return it; Swift assignments have copy behaviour. This is explained at the end of the Classes And Structures Apple documentation:
Assignment and Copy Behavior for Strings, Arrays, and Dictionaries
In Swift, many basic data types such as String, Array, and Dictionary are implemented as structures. This means that data such as strings, arrays, and dictionaries are copied when they are assigned to a new constant or variable, or when they are passed to a function or method.
This behavior is different from Foundation: NSString, NSArray, and NSDictionary are implemented as classes, not structures. Strings, arrays, and dictionaries in Foundation are always assigned and passed around as a reference to an existing instance, rather than as a copy.
NOTE: The description above refers to the “copying” of strings, arrays, and dictionaries. The behavior you see in your code will always be as if a copy took place. However, Swift only performs an actual copy behind the scenes when it is absolutely necessary to do so. Swift manages all value copying to ensure optimal performance, and you should not avoid assignment to try to preempt this optimization.
If your array contains reference objects, and you want to return a deep copy of them, that's a little trickier; here's a discussion about how to handle that. Although the correct way to handle that would be to redo your code to use value types.

You could do something like this.
let myArray: NSArray = ["a","b","c","d"]
func returnCopyOfArray() -> NSArray{
return myArray
}

Well, you could make the object conform to NSCopying.
class Person: NSObject, NSCopying {
var firstName: String
var lastName: String
var age: Int
init(firstName: String, lastName: String, age: Int) {
self.firstName = firstName
self.lastName = lastName
self.age = age
}
func copy(with zone: NSZone? = nil) -> Any {
let copy = Person(firstName: firstName, lastName: lastName, age: age)
return copy
}
}
Then you can call copy on it.
let clone = myPerson.copy()
If you didn't implement the class, then you can potentially extend the class if it has public or open access.
extension Person: NSCopying {
func copy(with zone: NSZone? = nil) -> Any {
let copy = Person(firstName: firstName, lastName: lastName, age: age)
return copy
}
}

Swift doesn't take references. So, you can directly return the array.

Related

Implementing Codable and NSManagedObject simultaneously in Swift

I have an order processing application I'm working on for my employers that was originally designed to get all data about orders, products, and clients dynamically from the API. So all of the objects and and all of the functions dealing with those objects are interacting in the app with a "pass by value" expectation, utilizing structs conforming to Codable.
I now have to cache pretty much all of these objects. Enter CoreData.
I have no desire to create two files for one object(one as a Codable struct and the other as an NSManagedObject class) and then trying to figure out how to convert one to another. So I want to implement both in the same file...while still somehow being able to use my "pass by value" code.
Perhaps this is impossible.
edit
I'm looking for something a bit simpler than rebuilding all my data structures from the ground up. I understand I'll have to do some alterations to make a Codable struct compatible with a NSManagedObject class. I'd like to avoid making a custom initializer that requires me to enter in every property by hand, because there's hundreds of them.
In the end, it sounds like there is no "good" solution when migrating from an API dynamic app without caching to a cached app.
I decided to just bite the bullet and try the method in this Question: How to use swift 4 Codable in Core Data?
EDIT:
I couldn't figure out how to make that work so I used the following solution:
import Foundation
import CoreData
/*
SomeItemData vs SomeItem:
The object with 'Data' appended to the name will always be the codable struct. The other will be the NSManagedObject class.
*/
struct OrderData: Codable, CodingKeyed, PropertyLoopable
{
typealias CodingKeys = CodableKeys.OrderData
let writer: String,
userID: String,
orderType: String,
shipping: ShippingAddressData
var items: [OrderedProductData]
let totals: PaymentTotalData,
discount: Float
init(json:[String:Any])
{
writer = json[CodingKeys.writer.rawValue] as! String
userID = json[CodingKeys.userID.rawValue] as! String
orderType = json[CodingKeys.orderType.rawValue] as! String
shipping = json[CodingKeys.shipping.rawValue] as! ShippingAddressData
items = json[CodingKeys.items.rawValue] as! [OrderedProductData]
totals = json[CodingKeys.totals.rawValue] as! PaymentTotalData
discount = json[CodingKeys.discount.rawValue] as! Float
}
}
extension Order: PropertyLoopable //this is the NSManagedObject. PropertyLoopable has a default implementation that uses Mirror to convert all the properties into a dictionary I can iterate through, which I can then pass directly to the JSON constructor above
{
convenience init(from codableObject: OrderData)
{
self.init(context: PersistenceManager.shared.context)
writer = codableObject.writer
userID = codableObject.userID
orderType = codableObject.orderType
shipping = ShippingAddress(from: codableObject.shipping)
items = []
for item in codableObject.items
{
self.addToItems(OrderedProduct(from: item))
}
totals = PaymentTotal(from: codableObject.totals)
discount = codableObject.discount
}
}

Store pointer to object in SQLite in Swift

I've a tree of objC/Swift objects. They represent graphical objects, which I want to query based on location and other properties.
Since SQLite supports an RTree table, I store the boundary boxes and relevant properties in tables along side a pointer to the original object. When I retrieve a result I can easily get the original object. This works fine in objC with the following conversions:
pointer to int: (intptr_t)self
int to pointer: (__bridge SomeObject *)(void *)(intptr_t)pointerValue
I'm updating the code and also converting to Swift. Unfortunately I can't find a way to do something equivalent in Swift. I've found withUnsafePointer(), but it states that the pointer is only valid inside the closure. It also doesn't seem to be possible to get the actual pointer value as an Int from UnsafePointer. It only has a hashValue property.
How can I get a pointer in Swift which I can store in SQLite?
Note: The SQLite database is in memory and I can guarantee that the objects will stay around as long as they are 'referenced' from the database. There is no need for any kind of long lived persistence.
You can use Unmanaged. For example (Swift 3):
class MyClass {
let name: String
init(name: String) {
self.name = name
}
}
func makeInt(from obj: MyClass) -> Int {
let unmanaged = Unmanaged.passUnretained(obj)
return Int(bitPattern: unmanaged.toOpaque())
}
func makeObj(from int: Int) -> MyClass? {
guard let pointer = UnsafeRawPointer(bitPattern: int) else {
return nil
}
let unmanaged = Unmanaged<MyClass>.fromOpaque(pointer)
return unmanaged.takeUnretainedValue()
}
let obj = MyClass(name: "foo")
let int = makeInt(from: obj)
if let obj2 = makeObj(from: int) {
print(obj2.name) // "foo"
}
The use of "unretained" values means that no memory management happens: it's your responsibility to keep objects alive.

deep copy for array of objects in swift

I have this class named Meal
class Meal {
var name : String = ""
var cnt : Int = 0
var price : String = ""
var img : String = ""
var id : String = ""
init(name:String , cnt : Int, price : String, img : String, id : String) {
self.name = name
self.cnt = cnt
self.price = price
self.img = img
self.id = id
}
}
and I have an array of Meal :
var ordered = [Meal]()
I want to duplicate that array and then do some changes to the Meal instances in one of them without changing the Meal instances in the second one, how would I make a deep copy of it?
This search result didn't help me
How do I make a exact duplicate copy of an array?
Since ordered is a swift array, the statement
var orderedCopy = ordered
will effectively make a copy of the original array.
However, since Meal is a class, the new array will contain references
to the same meals referred in the original one.
If you want to copy the meals content too, so that changing a meal in one array will not change a meal in the other array, then you must define Meal as a struct, not as a class:
struct Meal {
...
From the Apple book:
Use struct to create a structure. Structures support many of the same behaviors as classes, including methods and initializers. One of the most important differences between structures and classes is that structures are always copied when they are passed around in your code, but classes are passed by reference.
To improve on #Kametrixom answer check this:
For normal objects what can be done is to implement a protocol that supports copying, and make the object class implements this protocol like this:
protocol Copying {
init(original: Self)
}
extension Copying {
func copy() -> Self {
return Self.init(original: self)
}
}
And then the Array extension for cloning:
extension Array where Element: Copying {
func clone() -> Array {
var copiedArray = Array<Element>()
for element in self {
copiedArray.append(element.copy())
}
return copiedArray
}
}
and that is pretty much it, to view code and a sample check this gist
You either have to, as #MarioZannone mentioned, make it a struct, because structs get copied automatically, or you may not want a struct and need a class. For this you have to define how to copy your class. There is the NSCopying protocol which unifies that on the ObjC world, but that makes your Swift code "unpure" in that you have to inherit from NSObject. I suggest however to define your own copying protocol like this:
protocol Copying {
init(original: Self)
}
extension Copying {
func copy() -> Self {
return Self.init(original: self)
}
}
which you can implement like this:
class Test : Copying {
var x : Int
init() {
x = 0
}
// required initializer for the Copying protocol
required init(original: Test) {
x = original.x
}
}
Within the initializer you have to copy all the state from the passed original Test on to self. Now that you implemented the protocol correctly, you can do something like this:
let original = Test()
let stillOriginal = original
let copyOriginal = original.copy()
original.x = 10
original.x // 10
stillOriginal.x // 10
copyOriginal.x // 0
This is basically the same as NSCopying just without ObjC
EDIT: Sadly this yet so beautiful protocol works very poorly with subclassing...
A simple and quick way is to map the original array into the new copy:
let copyOfPersons: [Person] = allPersons.map({(originalPerson) -> Person in
let newPerson = Person(name: originalPerson.name, age: originalPerson.age)
return newPerson
})
The new Persons will have different pointers but same values.
Based on previous answer here
If you have nested objects, i.e. subclasses to a class then what you want is True Deep Copy.
//Example
var dogsForAdoption: Array<Dog>
class Dog{
var breed: String
var owner: Person
}
So this means implementing NSCopying in every class(Dog, Person etc).
Would you do that for say 20 of your classes? what about 30..50..100? You get it right? We need native "it just works!" way. But nope we don't have one. Yet.
As of now, Feb 2021, there is no proper solution of this issue. We have many workarounds though.
Here is the one I have been using, and one with less limitations in my opinion.
Make your class conforms to codable
class Dog: Codable{
var breed : String = "JustAnyDog"
var owner: Person
}
Create this helper class
class DeepCopier {
//Used to expose generic
static func Copy<T:Codable>(of object:T) -> T?{
do{
let json = try JSONEncoder().encode(object)
return try JSONDecoder().decode(T.self, from: json)
}
catch let error{
print(error)
return nil
}
}
}
Call this method whenever you need true deep copy of your object, like this:
//Now suppose
let dog = Dog()
guard let clonedDog = DeepCopier.Copy(of: dog) else{
print("Could not detach Dog")
return
}
//Change/mutate object properties as you want
clonedDog.breed = "rottweiler"
//Also clonedDog.owner != dog.owner, as both the owner : Person have dfferent memory allocations
As you can see we are piggy backing on Swift's JSONEncoder and JSONDecoder, using power of Codable, making true deep copy no matter how many nested objects are there under our object. Just make sure all your Classes conform to Codable.
Though its NOT an ideal solution, but its one of the most effective workaround.

NSUserDefaults in Swift - implementing type safety

One of the things that bugs me about Swift and Cocoa together is working with NSUserDefaults, because there is no type information and it is always necessary to cast the result of objectForKey to what you are expecting to get. It is unsafe and impractical. I decided to tackle this problem, making NSUserDefaults more practical in Swift-land, and hopefully learning something along the way. Here were my goals in the beginning:
Complete type safety: each key has one type associated with it. When setting a value, only a value of that type should be accepted and when getting a value the result should come out with the correct type
Global list of keys which are clear in meaning and content. The list should be easy to create, modify and extend
Clean syntax, using subscripts if possible. For example, this would
be perfect:
3.1. set: UserDefaults[.MyKey] = value
3.2. get: let value = UserDefaults[.MyKey]
Support for classes that conform to the NSCoding protocol by
automatically [un]archiving them
Support for all property list types accepted by NSUserDefaults
I started by creating this generic struct:
struct UDKey <T> {
init(_ n: String) { name = n }
let name: String
}
Then I created this other struct that serves as a container for all the keys in an application:
struct UDKeys {}
This can then be extended to add keys wherever needed:
extension UDKeys {
static let MyKey1 = UDKey<Int>("MyKey1")
static let MyKey2 = UDKey<[String]>("MyKey2")
}
Note how each key has a type associated with it. It represents the type of the information to be saved. Also, the name property is the string that is to be used as a key for NSUserDefaults.
The keys can be listed all in one constants file, or added using extensions on a per-file basis close to where they are being used for storing data.
Then I created an "UserDefaults" class responsible for handling the getting/setting of information:
class UserDefaultsClass {
let storage = NSUserDefaults.standardUserDefaults()
init(storage: NSUserDefaults) { self.storage = storage }
init() {}
// ...
}
let UserDefaults = UserDefaultsClass() // or UserDefaultsClass(storage: ...) for further customisation
The idea is that one instance for a particular domain is created and then every method is accessed in this way:
let value = UserDefaults.myMethod(...)
I prefer this approach to things like UserDefaults.sharedInstance.myMethod(...) (too long!) or using class methods for everything. Also, this allows interacting with various domains at the same time by using more than one UserDefaultsClass with different storage values.
So far, items 1 and 2 have been taken care of, but now the difficult part is starting: how to actually design the methods on UserDefaultsClass in order to comply with the rest.
For example, let's start with item 4. First I tried this (this code is inside UserDefaultsClass):
subscript<T: NSCoding>(key: UDKey<T>) -> T? {
set { storage.setObject(NSKeyedArchiver.archivedDataWithRootObject(newValue), forKey: key.name) }
get {
if let data = storage.objectForKey(key.name) as? NSData {
return NSKeyedUnarchiver.unarchiveObjectWithData(data) as? T
} else { return nil }
}
}
But then I find out that Swift doesn't allow generic subscripts!! Alright, then I guess I'll have to use functions then. There goes half of item 3...
func set <T: NSCoding>(key: UDKey<T>, _ value: T) {
storage.setObject(NSKeyedArchiver.archivedDataWithRootObject(value), forKey: key.name)
}
func get <T: NSCoding>(key: UDKey<T>) -> T? {
if let data = storage.objectForKey(key.name) as? NSData {
return NSKeyedUnarchiver.unarchiveObjectWithData(data) as? T
} else { return nil }
}
And that works just fine:
extension UDKeys { static let MyKey = UDKey<NSNotification>("MyKey") }
UserDefaults.set(UDKeys.MyKey, NSNotification(name: "Hello!", object: nil))
let n = UserDefaults.get(UDKeys.MyKey)
Note how I can't call UserDefaults.get(.MyKey). I have to use UDKeys.MyKey. And I can't do that because it's not yet possible to have static variables on a generic struct!!
Next, let's try number 5. Now that has been an headache and that's where I need lots of help.
Property list types are, as per the docs:
A default object must be a property list, that is, an instance of (or
for collections a combination of instances of): NSData, NSString,
NSNumber, NSDate, NSArray, or NSDictionary.
That in Swift means Int, [Int], [[String:Bool]], [[String:[Double]]], etc are all property list types. At first I thought that I could just write this and trust whoever is using this code to remember that only plist types are allowed:
func set <T: AnyObject>(key: UDKey<T>, _ value: T) {
storage.setObject(value, forKey: key.name)
}
func get <T: AnyObject>(key: UDKey<T>) -> T? {
return storage.objectForKey(key.name) as? T
}
But as you'll notice, while this works fine:
extension UDKeys { static let MyKey = UDKey<NSData>("MyKey") }
UserDefaults.set(UDKeys.MyKey, NSData())
let d = UserDefaults.get(UDKeys.MyKey)
This doesn't:
extension UDKeys { static let MyKey = UDKey<[NSData]>("MyKey") }
UserDefaults.set(UDKeys.MyKey, [NSData()])
And this doesn't either:
extension UDKeys { static let MyKey = UDKey<[Int]>("MyKey") }
UserDefaults.set(UDKeys.MyKey, [0])
Not even this:
extension UDKeys { static let MyKey = UDKey<Int>("MyKey") }
UserDefaults.set(UDKeys.MyKey, 1)
The problem is that they are all valid property list types yet Swift obviously interprets arrays and ints as structs, not as their Objective-C class counterparts. However:
func set <T: Any>(key: UDKey<T>, _ value: T)
won't work either, because then any value type, not just the ones that have a class cousin courtesy of Obj-C, is accepted, and storage.setObject(value, forKey: key.name) is no longer valid because value has to be a reference type.
If a protocol existed in Swift that accepted any reference type and any value type that can be converted to a reference type in objective-c (like [Int] and the other examples I mention) this problem would be solved:
func set <T: AnyObjectiveCObject>(key: UDKey<T>, _ value: T) {
storage.setObject(value, forKey: key.name)
}
func get <T: AnyObjectiveCObject>(key: UDKey<T>) -> T? {
return storage.objectForKey(key.name) as? T
}
AnyObjectiveCObject would accept any swift classes and swift arrays, dictionaries, numbers (ints, floats, bools, etc that convert to NSNumber), strings...
Unfortunately, AFAIK this doesn't exist.
Question:
How can I have write a generic function (or collection of overloaded generic functions) whose generic type T can be any reference type or any value type that Swift can convert to a reference type in Objective-C?
Solved: With the help of the answers I got, I arrived at what I wanted. In case anyone wants to take a look at my solution, here it is.
I don't mean to brag but ... oh who am I kidding, I totally do!
Preferences.set([NSData()], forKey: "MyKey1")
Preferences.get("MyKey1", type: type([NSData]))
Preferences.get("MyKey1") as [NSData]?
func crunch1(value: [NSData])
{
println("Om nom 1!")
}
crunch1(Preferences.get("MyKey1")!)
Preferences.set(NSArray(object: NSData()), forKey: "MyKey2")
Preferences.get("MyKey2", type: type(NSArray))
Preferences.get("MyKey2") as NSArray?
func crunch2(value: NSArray)
{
println("Om nom 2!")
}
crunch2(Preferences.get("MyKey2")!)
Preferences.set([[String:[Int]]](), forKey: "MyKey3")
Preferences.get("MyKey3", type: type([[String:[Int]]]))
Preferences.get("MyKey3") as [[String:[Int]]]?
func crunch3(value: [[String:[Int]]])
{
println("Om nom 3!")
}
crunch3(Preferences.get("MyKey3")!)
I'd like to introduce my idea. (Sorry for my poor English in advance.)
let plainKey = UDKey("Message", string)
let mixedKey
= UDKey("Mixed"
, array(dictionary(
string, tuple(
array(integer),
optional(date)))))
let ud = UserDefaults(NSUserDefaults.standardUserDefaults())
ud.set(plainKey, "Hello")
ud.set(plainKey, 2525) // <-- compile error
ud.set(mixedKey, [ [ "(^_^;)": ([1, 2, 3], .Some(NSDate()))] ])
ud.set(mixedKey, [ [ "(^_^;)": ([1, 2, 3], .Some(NSData()))] ]) // <-- compile error
The only difference is that UDKey() now requires #2 argument, a value of BiMap class. I've uncoupled the work originally of UDKey into BiMap which converts a value of a type to/from a value of another type.
public class BiMap<A, B> {
public func AtoB(a: A) -> B?
public func BtoA(b: B) -> A?
}
Consequently, types that set/get can accepts are conducted by BiMap, and no longer limited to types as can automatically cast
from/to AnyObject (more specifically, types NSUserDefaults can accepts.).
Because BiMap is a generic class, you can easily create subtypes of that, interchanging arbitrary two types you want.
Here is full source code. (But there are bugs yet to be fixed..)
https://gist.github.com/hisui/47f170a9e193168dc946

How to copy a "Dictionary" in Swift?

How to copy a "Dictionary" in Swift?
That is, get another object with same keys/values but different memory address.
Furthermore, how to copy an object in Swift?
Thanks,
A 'Dictionary' is actually a Struct in swift, which is a value type. So copying it is as easy as:
let myDictionary = ...
let copyOfMyDictionary = myDictionary
To copy an object (which is a reference type) has a couple of different answers. If the object adopts the NSCopying protocol, then you can just do:
let myObject = ...
let copyOfMyObject = myObject.copy()
If your object doesn't conform to NSCopying then you may not be able to copy the object. Depending on the object's class it may provide it's own method to get a duplicate copy, or if the object has no internal private state then you could create a new object with the same properties.
[Edited to correct a mistake in the previous answer - NSObject (both the Class and the Protocol) does not provide a copy or copyWithZone method and therefore is insufficient for being able to copy an object]
All of the answers given here are great, but they miss a key point regarding warning you about the caveats of copying.
In Swift, you have either value types (struct, enum, tuple, array, dict etc) or reference types (classes).
If you need to copy a class object, then, you have to implement the methods copyWithZone in your class and then call copy on the object.
But if you need to copy a value type object, for eg. an Array, you can copy it directly by just assigning it to a new variable like so:
let myArray = ...
let copyOfMyArray = myArray
But this is only shallow copying.
If your array contains class objects and you want to make their copy as well, then you have to copy each array element individually. This will allow you to make a deep copy.
This is extra information that I thought would add to the info already presented in the well-written answers above.
Object
class Person: NSObject, NSCopying {
var firstName: String
var lastName: String
var age: Int
init(firstName: String, lastName: String, age: Int) {
self.firstName = firstName
self.lastName = lastName
self.age = age
}
func copyWithZone(zone: NSZone) -> AnyObject {
let copy = Person(firstName: firstName, lastName: lastName, age: age)
return copy
}
}
Usage
let paul = Person(firstName: "Paul", lastName: "Hudson", age: 35)
let sophie = paul.copy() as! Person
sophie.firstName = "Sophie"
sophie.age = 5
print("\(paul.firstName) \(paul.lastName) is \(paul.age)")
print("\(sophie.firstName) \(sophie.lastName) is \(sophie.age)")
Source: https://www.hackingwithswift.com/example-code/system/how-to-copy-objects-in-swift-using-copy