I'd like to know if it's possible to have a task in wso2 that will trigger a sequence or something else to read the stored messages and process them ?
My need here is I have at a given time to process the messages (mostly with contact informations) and after processing I need to send email to each processed contact.
What would be the best approach for this ?
Thanks !
Yes, this is possible. The product you need is the WSO2 ESB. It has a concept called message processors. It can consume messages from a message store. There are two kind of message processors.
Message forwarding processors
Message sampling processors
They are quite similar. But for your purpose, message forwarding processor would be better.
After consuming the message, you can use the mail transport in WSO2 ESB to send the email to the contact. You can configure the time period for consuming messages, which is one of your main requirements.
Related
We are using googles steaming pull subscriber the design is as follows
We are doing
sending file from FE (frontend) to BE (backend)
BE converting that file to ByteArray and publishing to pubsub topic as message (so ByteArray going as message)
Topic sending that message to subscriber, subscriber converting the ByteArray to file again
that converted file subscriber sending to that tool
tool doing some cool stuff with file and notify the status to subscriber
that status going to BE and BE update the DB and sending that status to FE
Now in our subscriber when we receive message we are immediately acknowledge it and removing the listener of subscriber so that we don't get message any more
and when that tool done that stuff, it sending status to subscriber (we have express server running on subscriber) and
after receiving status we are re-creating listener of subscriber to receive message
Note
that tool may take 1hr or more to do stuff
we are using ordering key to properly distribute message to VM's
this code is working fine but my question is
is there any flaw in this (bcz we r removing listener then again re creating it or anything like that)
or any better option or GCP services to best fit this design
or any improvement in code
EDIT :
Removed code sample
I would say that there are several parts of this design that are sub-optimal. First of all, acking a message before you have finished processing it means you risk message loss. What happens if your tool or subscriber crashes after acking the message, but before processing has completed? This means when the processes start back up, they will not receive the message again. Are you okay with requests from the frontend possibly never being processed? If not, you'll want to ack after processing is completed, or--given that your processing takes so long--persist the request to a database or to some storage and then acknowledge the message. If you are going to have to persist the file somewhere else anyway, you might want to consider taking Pub/Sub out of the picture and just writing the file to storage like GCS and then having your subscribers instead read out of GCS directly.
Secondly, stopping the subscriber upon each message being received is an anti-pattern. Your subscriber should be receiving and processing each message as it arrives. If you need to limit the number of messages being processed in parallel, use message flow control.
Also ordering keys isn't really a way to "properly distribute message to VM's." Ordering keys is only a means by which to ensure ordered delivery. There are no guarantees that the messages for the same ordering key will continually go to the same subscriber client. In fact, if you shut down the subscriber client after receiving each message, then another subscriber could receiving the next message for the ordering key since you've acked the earlier message. If all you mean by "properly distribute message" is that you want the messages delivered in order, then this is the correct way to use ordering keys.
You say you have a subscription per client, then whether or not that is the right thing to do depends on what you mean by "client." If client means "user of the front end," then I imagine you plan to have a different topic per user as well. If so, then you need to keep in mind the 10,000 topic-per-project limit. If you mean that each VM has its own subscription, then note that each VM is going to receive every message published to the topic. If you only want one VM to receive each message, then you need to use the same subscription across all VMs.
In general, also keep in mind that Cloud Pub/Sub has at-least-once delivery semantics. That means that even an acknowledged message could be redelivered, so you do need to be prepared to handle duplicate message delivery.
With RabbitMQ, is there a way to "push" messages from a queue TO a consumer as opposed to having a consumer "poll and pull" messages FROM a queue?
This has been the cause of some debate on a current project i'm on. The argument from one side is that having consumers (i.e. a windows service) "poll" a queue until a new message arrives is somewhat inefficient and less desirable than the idea having the message "pushed" automatically from the queue to the subscriber(s)/consumer(s).
I can only seem to find information supporting the idea of consumers "polling and pulling" messages off of a queue (e.g. using a windows service to poll the queue for new messages). There isn't much information on the idea of "pushing" messages to a consumer/subscriber...
Having the server push messages to the client is one of the two ways to get messages to the client, and the preferred way for most applications. This is known as consuming messages via a subscription.
The client is connected. (The AMQP/RabbitMQ/most messaging systems model is that the client is always connected - except for network interruptions, of course.)
You use the client API to arrange that your channel consume messages by supplying a callback method. Then whenever a message is available the server sends it to the client over the channel and the client application gets it via an asynchronous callback (typically one thread per channel). You can set the "prefetch count" on the channel which controls the amount of pipelining your client can do over that channel. (For further parallelism an application can have multiple channels running over one connection, which is a common design that serves various purposes.)
The alternative is for the client to poll for messages one at a time, over the channel, via a get method.
You "push" messages from Producer to Exchange.
https://www.rabbitmq.com/tutorials/tutorial-three-python.html
BTW this is fitting very well IoT scenarios. Devices produce messages and sends them to an exchange. Queue is handling persistence, FIFO and other features, as well as delivery of messages to subscribers.
And, by the way, you never "Poll" the queue. Instead, you always subscribe to publisher. Similar to observer pattern. Generally, I would say genius principle.
So it is similar to post box or post office, except it sends you a notification when message is available.
Quoting from the docs here:
AMQP brokers either deliver messages to consumers subscribed to
queues, or consumers fetch/pull messages from queues on demand.
And from here:
Storing messages in queues is useless unless applications can consume
them. In the AMQP 0-9-1 Model, there are two ways for applications to
do this:
Have messages delivered to them ("push API")
Fetch messages as needed ("pull API")
With the "push API", applications have to indicate interest in
consuming messages from a particular queue. When they do so, we say
that they register a consumer or, simply put, subscribe to a queue. It
is possible to have more than one consumer per queue or to register an
exclusive consumer (excludes all other consumers from the queue while
it is consuming).
Each consumer (subscription) has an identifier called a consumer tag.
It can be used to unsubscribe from messages. Consumer tags are just
strings.
RabbitMQ broker is like server that wont send data to consumer without consumer client getting registering itself to server. but then question comes like below
Can RabbitMQ keep client consumer details and connect to client when packet comes?
Answer is no. so what is alternative well then write plugin by yourself that maintain client information in some kind of config. Plugin will pull from RabbitMQ Queue and push to client.
Please give look at this plugin might help.
https://www.rabbitmq.com/shovel.html
Frankly speaking Client need to implement AMQP protocol to receive so and should listen connection on some port for that. This sound like another server.
Regards,
Vishal
I'm a bit new to MSMQ and need a bit of help. We have a JMS based messaging system and we are considering replacing it with MSMQ. There are 2 existing scenarios in JMS which i need to verify MSMQ supports.
Multiple Subscriber Applications for the same message.
Notification send to a Subscriber Application that a message has arrived for them. (Basically MSMQ pushing message to the subscriber application as opposed to the Subscriber application checking the Queue in MSMQ)
If anyone could provide any info or link to any sites with the relevant info, I'd appreciate it.
Thanks,
Tarique
Multiple Subscriber Applications for the same message.
You can do this with Multiple-Destination Messaging
Notification send to a Subscriber Application that a message has arrived for them.
Use async pattern for this, you begin listen for a message and get notification when it arrives (C# method, such as MyReceiveCompleted in the code sample). From personal experience this works slower than reading one by one in a sync way. But if you handle less than 1k messages a second on an arbitary average machine you will be fine.
See MessageQueue.BeginReceive for code sample.
Is there some standard configuration setting, service, or tool that accepts messages from one queue and moves them on to another one? Automatically handling the dead message problem, and providing some of retry capability? I was thinking this is what "MSMQ Message Routing" does but can't seem to find documentation on it (except for on Windows Mobile 6, and I don't know if that's relevant).
Context:
I understand that when using MSMQ you should always write to a local queue so that failure is unlikely, and then X should move that message to a remote queue. Is my understanding wrong? Is this where messaging infrastructure like Biztalk comes in? Is it unnecessary to write to a local queue first to absolutely ensure success? Am I supposed to build X myself?
As Hugh points out, you need only one MSMQ Queue to Send messages in one direction from a source to a destination. Source and destination can be on the same server, same network or across the internet, however, both source and destination must have the MSMQ service running.
If you need to do 'message' routing (e.g. a switch which processes messages from several source or destination queues, or routing a message to one or more subscribers based on the type of message etc) you would need more than just MSMQ queue.
Although you certainly can use BizTalk to do message routing, this would be expensive / overkill if you didn't need to use other features of BizTalk. Would recommend you look at open source, or building something custom yourself.
But by "Routing" you might be referring to the queue redirection capability when using HTTP as the transport e.g. over the internet (e.g. here and here).
Re : Failed delivery and retry
I think you have most of the concepts - generally the message DELIVERY retry functionality should be implicit in MSMQ. If MSMQ cannot deliver the message before the defined expiry, then it will be returned on the Dead Letter Queue, and the source can then process messages from the DLQ and then 'compensate' for them (e.g. reverse the actions of the 'send', indicate failure to the user, etc).
However 'processing' type Retries in the destination will need to be performed by the destination application / listener (e.g. if the destination system is down, deadlocks, etc)
Common ways to do this include:
Using 2 Phase commit - under a distributed unit of work, pull the message off MSMQ and process it (e.g. insert data into a database, change the status of some records etc), and if any failure is encountered, then leave the message back onto the queue and the DB changes will be rolled back.
Application level retries - i.e. on the destination system, in the event of 'retryable' type errors (timeout due to load, deadlocks etc) then to sleep for a few seconds and then retry the same transaction.
However, in most cases, indefinite processing retries are not desirable and you would ultimately need to admit defeat and implement a mechanism to log the message and the error and remove it from the queue.
But I wouldn't 'retry' business failures (e.g. Business Rules, Validation etc) and the behaviour should be defined in your requirements of how to handle these (e.g. account is overdrawn, message is not in a correct format or not valid, etc), e.g. by returning a "NACK" type message back to the source.
HTH
MSMQ sends messages from one queue to another queue.
Let's say you have a queue on a remote machine. You want to send a message to that queue.
So you create a sender. A sender is an application that can use the MSMQ transport to send a message. This can be a .Net queue client (System.Messaging), a WCF service consumer (either over netMsmqBinding or msmqIntegrationBinding, BizTalk using the MSMQ adapter, etc etc.
When you send the message, what actually happens is:
The MSMQ queue manager on the sender machine writes the message to a temporary local queue.
The MSMQ queue manager on the sender machine connects to the MSMQ manager on the receiving machine and transmits the message.
The MSMQ queue manager on the receivers machine puts the message onto the destination queue.
In certain situations MSMQ will encounter messages which for some reason or another cannot be received on the destination queue. In these situations, if you have indicated that a message will use the dead-letter queue then MSMQ will make sure that the message is forwarded to the dead-letter queue.
I need to work with MSMQ (Microsoft Message Queuing). What is it, what is it for, how does it work? How is it different from web services?
With all due respect to #Juan's answer, both are ways of exchanging data between two disconnected processes, i.e. interprocess communication channels (IPC). Message queues are asynchronous, while webservices are synchronous. They use different protocols and back-end services to do this so they are completely different in implementation, but similar in purpose.
You would want to use message queues when there is a possibility that the other communicating process may not be available, yet you still want to have the message sent at the time of the client's choosing. Delivery will occur the when process on the other end wakes up and receives notification of the message's arrival.
As its name states, it's just a queue manager.
You can Send objects (serialized) to the queue where they will stay until you Receive them.
It's normally used to send messages or objects between applications in a decoupled way
It has nothing to do with webservices, they are two different things
Info on MSMQ:
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
Info on WebServices:
http://msdn.microsoft.com/en-us/library/ms972326.aspx
Transactional Queue Management 101
A transactional queue is a middleware system that asynchronously routes messages of one sort of another between hosts that may or may not be connected at any given time. This means that it must also be capable of persisting the message somewhere. Examples of such systems are MSMQ and IBM MQ
A Transactional Queue can also participate in a distributed transaction, and a rollback can trigger the disposal of messages. This means that a message is guaranteed to be delivered with at-most-once semantics or guaranteed delivery if not rolled back. The message won't be delivered if:
Host A posts the message but Host B
is not connected
Something (possibly but not
necessarily initiated from Host A)
rolls back the transaction
B connects after the transaction is
rolled back
In this case B will never be aware the message even existed unless informed through some other medium. If the transaction was rolled back, this probably doesn't matter. If B connects and collects the message before the transaction is rolled back, the rollback will also reverse the effects of the message on B.
Note that A can post the message to the queue with the guarantee of at-most-once delivery. If the transaction is committed Host A can assume that the message has been delivered by the reliable transport medium. If the transaction is rolled back, Host A can assume that any effects of the message have been reversed.
Web Services
A web service is remote procedure call or other service (e.g. RESTFul API's) published by a (typically) HTTP Server. It is a synchronous request/response protocol and has no guarantee of delivery built into the protocol. It is up to the client to validate that the service has been correctly run. Typically this will be through a reply to the request or timeout of the call.
In the latter case, web services do not guarantee at-most-once semantics. The server can complete the service and fail to deliver a response (possibly through something outside the server going wrong). The application must be able to deal with this situation.
IIRC, RESTFul services should be idempotent (the same state is achieved after any number of invocations of the same service), which is a strategy for dealing with this lack of guaranteed notification of success/failure in web service architectures. The idea is that conceptually one writes state rather than invoking a service, so one can write any number of times. This means that a lack of feedback about success can be tolerated by the application as it can re-try the posting until it gets a 'success' message from the server.
Note that you can use Windows Communication Foundation (WCF) as an abstraction layer above MSMQ. This gives you the feel of working with a service - with only one-way operations.
For more information, see:
http://msdn.microsoft.com/en-us/library/ms789048.aspx
Actually there is no relation between MSMQ and WebService.
Using MSMQ for interprocess communication (you can use also sockets, windows messaging, mapped memory).
it is a windows service that responsible for keeping messages till someone dequeue them.
you can say it is more reliable than sockets as messages are stored on a harddisk but it is slower than other IPC techniques.
You can use MSMQ in dotnet with small lines of code, Just Declare your MessageQueue object and call Receive and Send methods.
The Message itself can be normal string or binary data.
As everyone has explained MSMQ is used as a queue for messages. Messages can be wrapper for actual data, object and anything that you can serialize and send across the wire. MSMQ has it's own limitations. MSMQ 1.0 and MSMQ 2.0 had a 4MB message limit. This restriction was lifted off with MSMQ 3.0. Message oriented Middleware (MOM) is a concept that heavily depends on Messaging. Enterprise Service Bus foundation is built on Messaging. All these new technologies, depend on Messaging for asynchronous data delivery with reliability.
MSMQ stands for Microsoft Messaging Queue.
It is simply a queue that stores messages formatted so that it can pass to DB (may on same machine or on Server). There are different types of queues over there which categorizes the messages among themselves.
If there is some problem/error inside message or invalid message is passed, it automatically goes to Dead queue which denotes that it is not to be processed further. But before passing a message to dead queue it will retry until a max count and till it is not processed. Then it will be sent to the Dead queue.
It is generally used for sending log message from client machine to server or DB so that if there is any issue happens on client machine then developer or support team can go through log to solve problem.
MSMQ is also a service provided by Microsoft to Get records of Log files.
You get Better Idea from this blog http://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx.