It was suggested in this comment that there is a difference between how Matlab and Python pass around functions. From what I can tell by looking and using the two, there is no difference between the two, but maybe I'm missing something?
In Matlab, you would create a quick function handle like this:
fun = #(x) x.^2 + 1;
In Python, using a lambda function, you could create a similar function like this:
def fun(x):
return x^2
In both languages, it's possible to send the term 'fun' to another function as an argument - but the commenter I linked to insinuated that they are not the same and/or need to be used differently.
What am I missing?
The first comment seems to simply reiterate the idea that you can pass a MATLAB function handle as an argument (although the answer didn't state anything that would make me think otherwise). The second comment seemed to interpret this to mean that the first commenter thought that you couldn't do this in Python and responded to state that you can use either a lambda or pass the function directly.
Regardless, assuming that you use them correctly, a function handle in MATLAB is functionally equivalent to using either a lambda or function object as an input argument in Python.
In python, if you don't append the () to the end of the function, it doesn't execute the function and instead yields the function object which can then be passed to another function.
# Function which accepts a function as an input
def evalute(func, val)
# Execute the function that's passed in
return func(val)
# Standard function definition
def square_and_add(x):
return x**2 + 1
# Create a lambda function which does the same thing.
lambda_square_and_add = lambda x: x**2 + 1
# Now pass the function to another function directly
evaluate(square_and_add, 2)
# Or pass a lambda function to the other function
evaluate(lambda_square_and_add, 2)
In MATLAB, you have to use a function handle because MATLAB attempts to execute a function even if you omit the ().
function res = evaluate(func, val)
res = func(val)
end
function y = square_and_add(x)
y = x^2 + 1;
end
%// Will try to execute square_and_add with no inputs resulting in an error
evaluate(square_and_add)
%// Must use a function handle
evaluate(#square_and_add, 2)
Related
Could you please help me with the following issue: I have the following function handle:
r1 = #(lambda) b + lambda*(r - b); % r and b are vectors of return data
I want to find the optimal lambdas that set me a mean function to zero, for a given set of powers within that function. What I tried to do and didn't work, as it returns me an error for undefined operators for input arguments of type 'function_handle' is:
lambda0 = 0.3;
for a = 2:10 %power coefficient
S1(a) = fzero(mean((r - b)*r1.^(1/(a - 1))),lambda0);
end
Any suggestion as to how to go about this problem is highly appreciated! Thank you in advance.
fzero accepts a function handle as the first input. As you currently have it, you're trying to pass a statement as the first input. This statement can't even be properly evaluated because you are trying to perform numerical operations on a function handle (more on this in a bit).
You need to instead do something like this where we create a new function handle that evaluates the original function handle and performs the other operations you need.
S1(a) = fzero(#(lambda)mean((r - b)*r1(lambda).^(1/(a - 1))),lambda0);
Further Explanation
Performing operations on a function handle is not the same as performing them on the result.
So for example, if we had a function handle:
func = #(x)2*x;
If we evaluation this, by calling it with an input value for x
func(2)
4
This works as we would expect. If now we really want the value (2*x)^2, we could try to write it the way that you wrote your statement in your question
func2 = func^2;
We will get an error!
Undefined operator '^' for input arguments of type 'function_handle'.
This does not work because MATLAB attempts to apply the ^ operation to the function handle itself and not the value of the evaluated function handle.
Instead, we would need to create a new function handle that essentially wraps the other one and performs any additional options:
func2 = #(x)func(x)^2;
func2(2)
16
Bringing it Full-Circle
So if we go back to your question, you defined your anonymous function r1 like this.
r1 = #(lambda) b + lambda*(r - b); % r and b are vectors of return data
This all looks great. You have one input argument and you reference r and b from the parent workspace.
Now when you call fzero you try to perform operations on this function handle in hopes of creating a new function handle.
mean((r - b)*r1.^(1/(a - 1)))
Like we just showed this will result in a very similar error
Undefined operator .^ for input arguments of type 'function_handle'
So we need to wrap this into a new function.
newfunc = #(lambda)mean((r - b)*r1(lambda).^(1 / (a - 1)));
Now we can safely pass this to fzero.
result = fzero(newfunc, lambda0);
It is possible to use the function inputname to retrieve the workspace variable name passed in the call to the currently executing function. However, is there any equivalent function to obtain the name of the output arguments specified in the call to the currently executing function?
Imagine I have the following function:
function [a,b,c] = test(x)
disp([ouputname(1),ouputname(2),ouputname(3)])
end
When running this function:
[my,name,is] = test(x)
The expected result should be:
mynameis
Simply: no there isn't.
Complicated: Matlab code is "compiled" on run-time, and there is no way, that it knows [my,name,is] before it returns the result of test(x).
Workaround: if you want to ensure, that the strings used within the function are equal to the variables returned to the workspace, you can do the following using assignin:
function test(x, varnames)
a = 1;
outputname{1} = varnames{1};
assigin('base', outputname{1}, a)
...
c = 3;
outputname{3} = varnames{3};
assigin('base', outputname{3}, c)
disp([outputname{:}])
end
and call your function like:
text(x,{'my','name','is'})
and you will have exactly this variables in your workspace afterwards and your function output:
"mynameis"
I'm pretty new on Julia and have a question that may appear simple. Say I have a function, which I will name test(x::Vector, arg1, arg2) where x is a vector of variables and the function has two arguments arg1 & arg2.
I would like to optimize (minimize) the function test with respect to the vector x. I can't figure out how to use the optimize function from the Optim package that accepts two arguments values. In R, one may do as following:
optim(initial guest, test, arg1=value1,arg2=value2)
Is there a similar way to declare argument value in Julia?
You can define another function that fixes the value of those arguments.
# Function to minimize
f(x::Vector, a, b) = (x[1] - a)^2 + (x[2] - b)^2
using Optim
g(x::Vector) = f(x, 3, 4)
optimize(g, [0.,0.])
You could also use an anonymous function (but it may be less efficient).
optimize(x -> f(x,3,4), [0.,0.])
I created an anonymous function inside a script and I can't get MATLAB to run the fminsearch? Here's an what I have so far:
V=x(1);
f=x(2);
q=#(x) (pi.*D.*L)./(1000.*V.*f);
fminsearch(#q,x);
The variables D and L are defined, but MATLAB gives me the following error:
Error: File: Testing.m Line: 51 Column: 17
"q" was previously used as a variable, conflicting with its use here as the name of a function or command.
See "How MATLAB Recognizes Command Syntax" in the MATLAB documentation for details.
q is not mentioned before this command. What am I doing wrong?
Another thing that could solve my problem is to get my script to write a function file, but how to do that?
Remove the second #:
V=x(1);
f=x(2);
q=#(x) (pi.*D.*L)./(1000.*V.*f);
fminsearch(q,x);
q is a function handle. fminsearch expects a function handle. You can create a function handle out of a function using an # (e.g. #min), but you don't need to do that here.
You can also write the anonymous function inline with the search command:
V=x(1);
f=x(2);
fminsearch(#(x) (pi.*D.*L)./(1000.*V.*f),x);
UPDATE (credits to #wakjah)
For your code to do anything sensible, you should use the argument x of the anonymous function:
x0 = [initialV, initialF];
fminsearch(#(x) (pi.*D.*L)./(1000.*x(1).*x(2)), x0);
#function creates a function handle for an existing function.
q = #(x) whatever... creates a function handle called q.
But, you can't create a function handle for a function handle, only for a function.
See this:
>> fones = #ones
fones =
#ones
>> ffones = #fones
Error: "fones" was previously used as a
variable,
conflicting with its use here as the name
of a function or command.
See MATLAB Programming, "How MATLAB
Recognizes Function Calls That Use
Command Syntax" for details.
In Matlab, a function handle is a kind of a pointer to a function and is distinct from a function (unlike in some other languages where the a function identifier can be passed and stored as any other variable).
It's important to note that calling a function and a function handle results in the same behaviour. Except for the case where the identifier is used without any parentheses following it:
>> ones
ans =
1
>> fones
fones =
#ones
>> ones(2)
ans =
1 1
1 1
>> fones(2)
ans =
1 1
1 1
Working on an assignment involving Genetic Algorithms (loads of headaches, loads of fun). I need to be able to test differing crossover methods and differing mutation methods, to compare their results (part of the paper I have to write for the course). As such, I want to just pass the function names into the Repopulate method, as function handles.
function newpop = Repopulate(population, crossOverMethod, mutationMethod)
...
child = crossOverMethod(parent1, parent2, #mutationMethod);
...
function child = crossOverMethod(parent1, parent2, mutationMethod)
...
if (mutateThisChild == true)
child = mutationMethod(child);
end
...
The key point here is like 3, parameter 3: how do I pass mutationMethod down another level? If I use the # symbol, I get told:
"mutationMethod" was previously used as a variable,
conflicting with its use here as the name of a function or command.
If I don't use the # symbol, then mutationMethod gets called, with no parameters, and is quite unhappy.
While I am aware that yes, I could just rewrite my code to make it work differently, I'm now curious as to how to make it actually work.
Any help is greatly appreciated.
Actually just dont use the # symbol, use it when you call the Repopulate function instead.
Example:
function x = fun1(a,m)
x = fun2(a,m);
end
function y = fun2(b,n)
y = n(b);
end
which we call as:
> fun1([1 2 3], #sum)
6
Refer to the documentation for Passing Function Handle Arguments
Note you can check if the argument is a function handle by: isa(m,'function_handle'). Therefore you can make your function Repopulate more flexible by accepting both a function handle and a function name as a string:
function x = fun(a,m)
if ischar(m)
f = str2func(m);
elseif isa(m,'function_handle')
f = m;
else
error('expecting a function')
end
x = fun2(a,f);
end
which now can be called both ways:
fun1([1 2 3], #sum)
fun1([1 2 3], 'sum')