Fit a quadratic function of two variables (Practitioner Black Scholes Deterministic Volatility Functions) - matlab

I am attempting to fit the parameters of a deterministic volatility function for use in the practitioner Black Scholes model.
The formula for which I want to estimate the "a" parameters is:
sig = a0 + a1*K + a2*K^2 + a3*T + a4*T^2 + a5*KT
Where sig, K and T are known; I have multiple observations of K, T and sig combinations but only want a single set of "a" parameters.
How might I go about this? My google searches and own attempts all failed, unfortunately.
Thank you!

The function lsqcurvefit allows you to define the function that you want to fit. It should be straight forward from there on.
http://se.mathworks.com/help/optim/ug/lsqcurvefit.html

Some Mathematics
Notation stuff: index your observations by i and add an error term.
sig_i = a0 + a1*K_i + a2*K_i^2 + a3*T_i + a4*T_i^2 + a5*KT_i + e_i
Something probably not insane to do would be to minimize the square of the error term:
minimize (over a) \sum_i e_i^2
The solution to least squares is a simple linear algebra problem. (See https://stats.stackexchange.com/questions/186196/understanding-linear-algebra-in-ordinary-least-squares-derivation/186289#186289 for a solution if you really care.) (Further note: e_i is a linear function of a. I'm not sure why you would need lsqcurvefit as another answer suggested?)
Matlab Code for OLS (Ordinary Least Squares)
Assuming sig, K, T, and KT are n by 1 vectors
y = sig;
X = [ones(length(sig),1), K, K.^2, T, T.^2, KT];
a = X \ y; %basically computes a = inv(X'*X)*(X'*y) but in a better way
This an ordinary least squares regression of y on X.
Further Ideas
Depending on the distribution of your error terms, correlated error etc... regular OLS may be inefficient or possibly even inappropriate... I'm not familiar with the details of this problem to know. You may want to check what people do.
Eg. a technique that's less sensitive to big outliers is to minimize the absolute value of the error.
minimize (over a) \sum_i |a_i|
If you have a good, statistical model of how the data is generated you could do maximum likelihood estimation. Anyway... this rapidly devolve into a multi-quarter, statistics class.

Related

Optimizing huge amounts of calls of fsolve in Matlab

I'm solving a pair of non-linear equations for each voxel in a dataset of a ~billion voxels using fsolve() in MATLAB 2016b.
I have done all the 'easy' optimizations that I'm aware of. Memory localization is OK, I'm using parfor, the equations are in fairly numerically simple form. All discontinuities of the integral are fed to integral(). I'm using the Levenberg-Marquardt algorithm with good starting values and a suitable starting damping constant, it converges on average with 6 iterations.
I'm now at ~6ms per voxel, which is good, but not good enough. I'd need a order of magnitude reduction to make the technique viable. There's only a few things that I can think of improving before starting to hammer away at accuracy:
The splines in the equation are for quick sampling of complex equations. There are two for each equation, one is inside the 'complicated nonlinear equation'. They represent two equations, one which is has a large amount of terms but is smooth and has no discontinuities and one which approximates a histogram drawn from a spectrum. I'm using griddedInterpolant() as the editor suggested.
Is there a faster way to sample points from pre-calculated distributions?
parfor i=1:numel(I1)
sols = fsolve(#(x) equationPair(x, input1, input2, ...
6 static inputs, fsolve options)
output1(i) = sols(1); output2(i) = sols(2)
end
When calling fsolve, I'm using the 'parametrization' suggested by Mathworks to input the variables. I have a nagging feeling that defining a anonymous function for each voxel is taking a large slice of the time at this point. Is this true, is there a relatively large overhead for defining the anonymous function again and again? Do I have any way to vectorize the call to fsolve?
There are two input variables which keep changing, all of the other input variables stay static. I need to solve one equation pair for each input pair so I can't make it a huge system and solve it at once. Do I have any other options than fsolve for solving pairs of nonlinear equations?
If not, some of the static inputs are the fairly large. Is there a way to keep the inputs as persistent variables using MATLAB's persistent, would that improve performance? I only saw examples of how to load persistent variables, how could I make it so that they would be input only once and future function calls would be spared from the assumedly largish overhead of the large inputs?
EDIT:
The original equations in full form look like:
Where:
and:
Everything else is known, solving for x_1 and x_2. f_KN was approximated by a spline. S_low (E) and S_high(E) are splines, the histograms they are from look like:
So, there's a few things I thought of:
Lookup table
Because the integrals in your function do not depend on any of the parameters other than x, you could make a simple 2D-lookup table from them:
% assuming simple (square) range here, adjust as needed
[x1,x2] = meshgrid( linspace(0, xmax, N) );
LUT_high = zeros(size(x1));
LUT_low = zeros(size(x1));
for ii = 1:N
LUT_high(:,ii) = integral(#(E) Fhi(E, x1(1,ii), x2(:,ii)), ...
0, E_high, ...
'ArrayValued', true);
LUT_low(:,ii) = integral(#(E) Flo(E, x1(1,ii), x2(:,ii)), ...
0, E_low, ...
'ArrayValued', true);
end
where Fhi and Flo are helper functions to compute those integrals, vectorized with scalar x1 and vector x2 in this example. Set N as high as memory will allow.
Those lookup tables you then pass as parameters to equationPair() (which allows parfor to distribute the data). Then just use interp2 in equationPair():
F(1) = I_high - interp2(x1,x2,LUT_high, x(1), x(2));
F(2) = I_low - interp2(x1,x2,LUT_low , x(1), x(2));
So, instead of recomputing the whole integral every time, you evaluate it once for the expected range of x, and reuse the outcomes.
You can specify the interpolation method used, which is linear by default. Specify cubic if you're really concerned about accuracy.
Coarse/Fine
Should the lookup table method not be possible for some reason (memory limitations, in case the possible range of x is too big), here's another thing you could do: split up the whole procedure in 2 parts, which I'll call coarse and fine.
The intent of the coarse method is to improve your initial estimates really quickly, but perhaps not so accurately. The quickest way to approximate that integral by far is via the rectangle method:
do not approximate S with a spline, just use the original tabulated data (so S_high/low = [S_high/low#E0, S_high/low#E1, ..., S_high/low#E_high/low]
At the same values for E as used by the S data (E0, E1, ...), evaluate the exponential at x:
Elo = linspace(0, E_low, numel(S_low)).';
integrand_exp_low = exp(x(1)./Elo.^3 + x(2)*fKN(Elo));
Ehi = linspace(0, E_high, numel(S_high)).';
integrand_exp_high = exp(x(1)./Ehi.^3 + x(2)*fKN(Ehi));
then use the rectangle method:
F(1) = I_low - (S_low * Elo) * (Elo(2) - Elo(1));
F(2) = I_high - (S_high * Ehi) * (Ehi(2) - Ehi(1));
Running fsolve like this for all I_low and I_high will then have improved your initial estimates x0 probably to a point close to "actual" convergence.
Alternatively, instead of the rectangle method, you use trapz (trapezoidal method). A tad slower, but possibly a bit more accurate.
Note that if (Elo(2) - Elo(1)) == (Ehi(2) - Ehi(1)) (step sizes are equal), you can further reduce the number of computations. In that case, the first N_low elements of the two integrands are identical, so the values of the exponentials will only differ in the N_low + 1 : N_high elements. So then just compute integrand_exp_high, and set integrand_exp_low equal to the first N_low elements of integrand_exp_high.
The fine method then uses your original implementation (with the actual integral()s), but then starting at the updated initial estimates from the coarse step.
The whole objective here is to try and bring the total number of iterations needed down from about 6 to less than 2. Perhaps you'll even find that the trapz method already provides enough accuracy, rendering the whole fine step unnecessary.
Vectorization
The rectangle method in the coarse step outlined above is easy to vectorize:
% (uses R2016b implicit expansion rules)
Elo = linspace(0, E_low, numel(S_low));
integrand_exp_low = exp(x(:,1)./Elo.^3 + x(:,2).*fKN(Elo));
Ehi = linspace(0, E_high, numel(S_high));
integrand_exp_high = exp(x(:,1)./Ehi.^3 + x(:,2).*fKN(Ehi));
F = [I_high_vector - (S_high * integrand_exp_high) * (Ehi(2) - Ehi(1))
I_low_vector - (S_low * integrand_exp_low ) * (Elo(2) - Elo(1))];
trapz also works on matrices; it will integrate over each column in the matrix.
You'd call equationPair() then using x0 = [x01; x02; ...; x0N], and fsolve will then converge to [x1; x2; ...; xN], where N is the number of voxels, and each x0 is 1×2 ([x(1) x(2)]), so x0 is N×2.
parfor should be able to slice all of this fairly easily over all the workers in your pool.
Similarly, vectorization of the fine method should also be possible; just use the 'ArrayValued' option to integral() as shown above:
F = [I_high_vector - integral(#(E) S_high(E) .* exp(x(:,1)./E.^3 + x(:,2).*fKN(E)),...
0, E_high,...
'ArrayValued', true);
I_low_vector - integral(#(E) S_low(E) .* exp(x(:,1)./E.^3 + x(:,2).*fKN(E)),...
0, E_low,...
'ArrayValued', true);
];
Jacobian
Taking derivatives of your function is quite easy. Here is the derivative w.r.t. x_1, and here w.r.t. x_2. Your Jacobian will then have to be a 2×2 matrix
J = [dF(1)/dx(1) dF(1)/dx(2)
dF(2)/dx(1) dF(2)/dx(2)];
Don't forget the leading minus sign (F = I_hi/lo - g(x) → dF/dx = -dg/dx)
Using one or both of the methods outlined above, you can implement a function to compute the Jacobian matrix and pass this on to fsolve via the 'SpecifyObjectiveGradient' option (via optimoptions). The 'CheckGradients' option will come in handy there.
Because fsolve usually spends the vast majority of its time computing the Jacobian via finite differences, manually computing a value for it manually will normally speed the algorithm up tremendously.
It will be faster, because
fsolve doesn't have to do extra function evaluations to do the finite differences
the convergence rate will increase due to the improved precision of the Jacobian
Especially if you use the rectangle method or trapz like above, you can reuse many of the computations you've already done for the function values themselves, meaning, even more speed-up.
Rody's answer was the correct one. Supplying the Jacobian was the single largest factor. Especially with the vectorized version, there were 3 orders of magnitude of difference in speed with the Jacobian supplied and not.
I had trouble finding information about this subject online so I'll spell it out here for future reference: It is possible to vectorize independant parallel equations with fsolve() with great gains.
I also did some work with inlining fsolve(). After supplying the Jacobian and being smarter about the equations, the serial version of my code was mostly overhead at ~1*10^-3 s per voxel. At that point most of the time inside the function was spent passing around a options -struct and creating error-messages which are never sent + lots of unused stuff assumedly for the other optimization functions inside the optimisation function (levenberg-marquardt for me). I succesfully butchered the function fsolve and some of the functions it calls, dropping the time to ~1*10^-4s per voxel on my machine. So if you are stuck with a serial implementation e.g. because of having to rely on the previous results it's quite possible to inline fsolve() with good results.
The vectorized version provided the best results in my case, with ~5*10^-5 s per voxel.

How can I make all-in-one polynomial from multi-polynomial?

I'm not familiar with expert math. so I don't know where to start from.
I have get a some article like this. I am just following this article description. But this is not easy to me.
But I'm not sure how to make just one polynomial equation(or something like that) from above 4 polynomial equations. Is this can be possible way?
If yes, Would you please help me how to get a polynomial(or something like equation)? If not, would you let me know the reason of why?
UPDATE
I'd like to try as following
clear all ;
clc
ab = (H' * H)\H' * y;
y2 = H*ab;
Finally I can get some numbers like this.
So, is this meaning?
As you can see the red curve line, something wrong.
What did I miss anythings?
All the article says is "you can combine multiple data sets into one to get a single polynomial".
You can also go in the other direction: subdivide your data set into pieces and get as many separate ones as you wish. (This is called n-fold validation.)
You start with a collection of n points (x, y). (Keep it simple by having only one independent variable x and one dependent variable y.)
Your first step should be to plot the data, look at it, and think about what kind of relationship between the two would explain it well.
Your next step is to assume some form for the relationship between the two. People like polynomials because they're easy to understand and work with, but other, more complex relationships are possible.
One polynomial might be:
y = c0 + c1*x + c2*x^2 + c3*x^3
This is your general relationship between the dependent variable y and the independent variable x.
You have n points (x, y). Your function can't go through every point. In the example I gave there are only four coefficients. How do you calculate the coefficients for n >> 4?
That's where the matricies come in. You have n equations:
y(1) = c0 + c1*x(1) + c2*x(1)^2 + c3*x(1)^3
....
y(n) = c0 + c1*x(n) + c2*x(n)^2 + c3*x(n)^3
You can write these as a matrix:
y = H * c
where the prime denotes "transpose".
Premultiply both sides by transpose(X):
transpose(X)* y = transpose(H)* H * c
Do a standard matrix inversion or LU decomposition to solve for the unknown vector of coefficients c. These particular coefficients minimize the sum of squares of differences between the function evaluated at each point x and your actual value y.
Update:
I don't know where this fixation with those polynomials comes from.
Your y vector? Wrong. Your H matrix? Wrong again.
If you must insist on using those polynomials, here's what I'd recommend: You have a range of x values in your plot. Let's say you have 100 x values, equally spaced between 0 and your max value. Those are the values to plug into your H matrix.
Use the polynomials to synthesize sets of y values, one for each polynomial.
Combine all of them into a single large problem and solve for a new set of coefficients. If you want a 3rd order polynomial, you'll only have four coefficients and one equation. It'll represent the least squares best approximation of all the synthesized data you created with your four polynomials.

Minimize quadratic form energy using matlab. Which function should I use?

I'm new to matlab and try to do some energy minimization work with it. The energy function takes a 3-channel image as input. For every channel, there's a energy term looks like this:
E = x'Ax + ||Bx||^2 + w*||x-c||^2,
where x,c are vectors of length N, A is a matrix of size N*N. A is sparse and positive semi-definite and has 25 non-zero elements per row, giving constraints to all elements of x. B is of size M*N. B is sparse too and has 2 non-zero elements per row. N is about 850,000. M is about 1,000,000. Although B gives more than N constraints, some elements of x have nothing to do with ||Bx||^2 term. The weight w of term ||x-c||^ is quite small, say 1e-3.
I've searched matlab documentation. It looks like I should use lsqnonlin for this problem. Is there a special designed function or option for quadratic form minimization in matlab?
For those who are familiar with computer vision literature, I'm actually trying to implement the algorithm in "Coherent Intrinsic Images from Photo Collections". The authors said they use matlab backslash operator to minimize the energy, but I can't see how a backslash operator can be used in quadratic form problem.
Yes, there is a function specifically for optimizing quadratic cost functions: quadprog. However, if you don't have any linear constraints, then you should be able to write your cost function as
E = x'Mx/2 + vx + k
Finding the point of zero gradient (hopefully a minimum) can then be achieved by taking first derivatives:
dE/dx = Mx + v
setting them to zero giving the solution:
x = -M\v

MATLAB | calculating parameters of gamma dist based on mean and probability interval

I have a system of 2 equations in 2 unknowns that I want to solve using MATLAB but don't know exactly how to program. I've been given some information about a gamma distribution (mean of 1.86, 90% interval between 1.61 and 2.11) and ultimately want to get the mean and variance. I know that I could use the normal approximation but I'd rather solve for A and B, the shape and scale parameters of the gamma distribution, and find the mean and variance that way. In pseudo-MATLAB code I would want to solve this:
gamcdf(2.11, A, B) - gamcdf(1.61, A, B) = 0.90;
A*B = 1.86;
How would you go about solving this? I have the symbolic math toolbox if that helps.
The mean is A*B. So can you solve for perhaps A in terms of the mean(mu) and B?
A = mu/B
Of course, this does no good unless you knew B. Or does it?
Look at your first expression. Can you substitute?
gamcdf(2.11, mu/B, B) - gamcdf(1.61, mu/B, B) = 0.90
Does this get you any closer? Perhaps. There will be no useful symbolic solution available, except in terms of the incomplete gamma function itself. How do you solve a single equation numerically in one unknown in matlab? Use fzero.
Of course, fzero looks for a zero value. But by subtracting 0.90, that is resolved.
Can we define a function that fzero can use? Use a function handle.
>> mu = 1.86;
>> gamfun = #(B) gamcdf(2.11, mu/B, B) - gamcdf(1.61, mu/B, B) - 0.90;
So try it. Before we do that, I always recommend plotting things.
>> ezplot(gamfun)
Hmm. That plot suggests that it might be difficult to find a zero of your function. If you do try it, you will find that good starting values for fzero are necessary here.
Sorry about my first try. Better starting values for fzero, plus some more plotting does give a gamma distribution that yields the desired shape.
>> B = fzero(gamfun,[.0000001,.1])
B =
0.0124760672290871
>> A = mu/B
A =
149.085442218805
>> ezplot(#(x) gampdf(x,A,B))
In fact this is a very "normal", i.e, Gaussian, looking curve.

How to find minimum of nonlinear, multivariate function using Newton's method (code not linear algebra)

I'm trying to do some parameter estimation and want to choose parameter estimates that minimize the square error in a predicted equation over about 30 variables. If the equation were linear, I would just compute the 30 partial derivatives, set them all to zero, and use a linear-equation solver. But unfortunately the equation is nonlinear and so are its derivatives.
If the equation were over a single variable, I would just use Newton's method (also known as Newton-Raphson). The Web is rich in examples and code to implement Newton's method for functions of a single variable.
Given that I have about 30 variables, how can I program a numeric solution to this problem using Newton's method? I have the equation in closed form and can compute the first and second derivatives, but I don't know quite how to proceed from there. I have found a large number of treatments on the web, but they quickly get into heavy matrix notation. I've found something moderately helpful on Wikipedia, but I'm having trouble translating it into code.
Where I'm worried about breaking down is in the matrix algebra and matrix inversions. I can invert a matrix with a linear-equation solver but I'm worried about getting the right rows and columns, avoiding transposition errors, and so on.
To be quite concrete:
I want to work with tables mapping variables to their values. I can write a function of such a table that returns the square error given such a table as argument. I can also create functions that return a partial derivative with respect to any given variable.
I have a reasonable starting estimate for the values in the table, so I'm not worried about convergence.
I'm not sure how to write the loop that uses an estimate (table of value for each variable), the function, and a table of partial-derivative functions to produce a new estimate.
That last is what I'd like help with. Any direct help or pointers to good sources will be warmly appreciated.
Edit: Since I have the first and second derivatives in closed form, I would like to take advantage of them and avoid more slowly converging methods like simplex searches.
The Numerical Recipes link was most helpful. I wound up symbolically differentiating my error estimate to produce 30 partial derivatives, then used Newton's method to set them all to zero. Here are the highlights of the code:
__doc.findzero = [[function(functions, partials, point, [epsilon, steps]) returns table, boolean
Where
point is a table mapping variable names to real numbers
(a point in N-dimensional space)
functions is a list of functions, each of which takes a table like
point as an argument
partials is a list of tables; partials[i].x is the partial derivative
of functions[i] with respect to 'x'
epilson is a number that says how close to zero we're trying to get
steps is max number of steps to take (defaults to infinity)
result is a table like 'point', boolean that says 'converged'
]]
-- See Numerical Recipes in C, Section 9.6 [http://www.nrbook.com/a/bookcpdf.php]
function findzero(functions, partials, point, epsilon, steps)
epsilon = epsilon or 1.0e-6
steps = steps or 1/0
assert(#functions > 0)
assert(table.numpairs(partials[1]) == #functions,
'number of functions not equal to number of variables')
local equations = { }
repeat
if Linf(functions, point) <= epsilon then
return point, true
end
for i = 1, #functions do
local F = functions[i](point)
local zero = F
for x, partial in pairs(partials[i]) do
zero = zero + lineq.var(x) * partial(point)
end
equations[i] = lineq.eqn(zero, 0)
end
local delta = table.map(lineq.tonumber, lineq.solve(equations, {}).answers)
point = table.map(function(v, x) return v + delta[x] end, point)
steps = steps - 1
until steps <= 0
return point, false
end
function Linf(functions, point)
-- distance using L-infinity norm
assert(#functions > 0)
local max = 0
for i = 1, #functions do
local z = functions[i](point)
max = math.max(max, math.abs(z))
end
return max
end
You might be able to find what you need at the Numerical Recipes in C web page. There is a free version available online. Here (PDF) is the chapter containing the Newton-Raphson method implemented in C. You may also want to look at what is available at Netlib (LINPack, et. al.).
As an alternative to using Newton's method the Simplex Method of Nelder-Mead is ideally suited to this problem and referenced in Numerical Recpies in C.
Rob
You are asking for a function minimization algorithm. There are two main classes: local and global. Your problem is least squares so both local and global minimization algorithms should converge to the same unique solution. Local minimization is far more efficient than global so select that.
There are many local minimization algorithms but one particularly well suited to least squares problems is Levenberg-Marquardt. If you don't have such a solver to hand (e.g. from MINPACK) then you can probably get away with Newton's method:
x <- x - (hessian x)^-1 * grad x
where you compute the inverse matrix multiplied by a vector using a linear solver.
Since you already have the partial derivatives, how about a general gradient-descent approach?
Maybe you think you have a good-enough solution, but for me, the easiest way to think about this is to understand it in the 1-variable case first, and then extend it to the matrix case.
In the 1-variable case, if you divide the first derivative by the second derivative, you get the (negative) step size to your next trial point, e.g. -V/A.
In the N-variable case, the first derivative is a vector and the second derivative is a matrix (the Hessian). You multiply the derivative vector by the inverse of the second derivative, and the result is the negative step-vector to your next trial point, e.g. -V*(1/A)
I assume you can get the 2nd-derivative Hessian matrix. You will need a routine to invert it. There are plenty of these around in various linear algebra packages, and they are quite fast.
(For readers who are not familiar with this idea, suppose the two variables are x and y, and the surface is v(x,y). Then the first derivative is the vector:
V = [ dv/dx, dv/dy ]
and the second derivative is the matrix:
A = [dV/dx]
[dV/dy]
or:
A = [ d(dv/dx)/dx, d(dv/dy)/dx]
[ d(dv/dx)/dy, d(dv/dy)/dy]
or:
A = [d^2v/dx^2, d^2v/dydx]
[d^2v/dxdy, d^2v/dy^2]
which is symmetric.)
If the surface is parabolic (constant 2nd derivative) it will get to the answer in 1 step. On the other hand, if the 2nd derivative is very not-constant, you could encounter oscillation. Cutting each step in half (or some fraction) should make it stable.
If N == 1, you'll see that it does the same thing as in the 1-variable case.
Good luck.
Added: You wanted code:
double X[N];
// Set X to initial estimate
while(!done){
double V[N]; // 1st derivative "velocity" vector
double A[N*N]; // 2nd derivative "acceleration" matrix
double A1[N*N]; // inverse of A
double S[N]; // step vector
CalculateFirstDerivative(V, X);
CalculateSecondDerivative(A, X);
// A1 = 1/A
GetMatrixInverse(A, A1);
// S = V*(1/A)
VectorTimesMatrix(V, A1, S);
// if S is small enough, stop
// X -= S
VectorMinusVector(X, S, X);
}
My opinion is to use a stochastic optimizer, e.g., a Particle Swarm method.