UPS for 750W to be up 6 hours - server

I have a Dell PowerEdge t630 server 750W power with PF 94%, I need a UPS that make my server Up for 6 hours at least
please advice the UPS capacity in KVA
thanks

The UPS power capacity will need to be at least 750VA. With a power factor that high, watts and VA are effectively the same. To supply 750W, you need a 750VA UPS.
Make sure the UPS can also supply 750 watts. Not every 750 VA UPS can supply 750 watts. Many UPSes can supply more reactive power than they can real power. You may wind up needing a UPS rated for 1,000 VA to get one that can supply 50 watts.
The amount of time the UPS needs to last has no effect on how much power it needs to be able to supply. A 100 watt light bulb needs 100 watts, whether it's on for a minute or a year.
I would caution you that there is no reliable way to compute a UPS's run time at a given load based on its stated efficiency or reserve time at other load values. Battery efficiency changes drastically with load. For example, halving the battery size will often cut the run time by much more than half. The only reliable way to predict UPS run time is to ask the manufacturer or look at at the manufacturer's graph of run time versus load.
Note that doubling the battery size will typically more than double the run time. This means that, for example, a UPS that claims to run for one hour at half load will almost certainly not run for half an hour at full load, it will usually run for much less time than that.
For such a long run time, look for a UPS that can be expanded with additional battery modules. The manufacturer should provide a chart that will tell you how long each module will last, and that will let you figure out how many modules you will need. Be aware that adding more battery modules often increases the charge time.

Related

STM32 ADC: leave it running at 'high' speed or switch it off as much as possible?

I am using a G0 with one ADC and 8 channels. Works fine. I use 4 channels. One is temperature that is measured constantly and I am interested in the value every 60s. Another one is almost the opposite: it is measuring sound waves for a couple a minutes per day and I need those samples at 10kHz.
I solved this by letting all 4 channels sample at 10kHz and have the four readings moved to memory by DMA (array of length 4 with 1 measurement each). Every 60s I take the temperature and when I need the audio, I retrieve the audio values.
If I had two ADC's, I would start the temperature ADC reading for 1 conversion every 60s. Non-stop. And I would only start the audio ADC for the the couple of minutes a day that it is needed. But with the one ADC solution, it seems simple to let all conversions run at this high speed continuously and that raised my question: Is there any true downside in having 40.000 conversions per second, 24 hours per day? If not, the code is simple. I just have the most recent values in memory all the time. But maybe I ruin the chip? I use too much energy I know. But there is plenty of it in this case.
You aren't going to "wear it out" by running it when you don't need to.
The main problems are wasting power and RAM.
If you have enough of these, then the lesser problems are:
The wasted power will become heat, this may upset your temperature measurements (this is a very small amount though).
Having the DMA running will increase your interrupt latency and maybe also slow down the processor slightly, if it encounters bus contention (this only matters if you are close to capacity in these regards).
Having it running all the time may also have the advantage of more stable readings, not being perturbed turning things on and off.

What period is P99 or P95 calculated over?

When committing to/setting SLAs for a service, what time period should the SLA be calculated over?
For example, if I wanted all the services in my organization to commit to P95 latency, and one of the services commits to 500ms, what is the time window - because the P95 will be different based on the time window we look at.
Depends on in what cycles your latency fluctuates.
No daily / hourly peaks? A couple thousand samples do just fine.
Daily fluctuations (e.g. peak usage, concurrent backups etc.)? Then you will need to measure at least a whole day.
Weekly fluctuations (e.g. tied to work hours or evening activities etc.)? Then you will need to sample over a full week.
There is no strict requirement to sample everything over the chosen time window, but your time window better be representative or you may be held liable. Also make sure to be fair when you under-sample.
If you want to be on the safe side, take the worst-case-scenario in your load cycle, and within that scenario take a full minute worth of samples. That gives you a good estimate what will be held against you.

Alert in RAM/CPU Usage Detection in e-Commerce Server

Currently I'm building my monitoring services for my e-commerce Server, which mostly focus on CPU/RAM usage. It's likely Anomaly Detection on Timeseries data.
My approach is building LSTM Neural Network to predict next CPU/RAM value on chart trending and compare with STD (standard deviation) value multiply with some number (currently is 10)
But in real life conditions, it depends on many differents conditions, such as:
1- Maintainance Time (in this time "anomaly" is not "anomaly")
2- Sales time in day-off events, holidays, etc., RAM/CPU usages increase is normal, of courses
3- If percentages of CPU/RAM decrement are the same over 3 observations: 5 mins, 10 mins & 15 mins -> Anomaly. But if 5 mins decreased 50%, but 10 mins it didn't decrease too much (-5% ~ +5%) -> Not an "anomaly".
Currently I detect anomaly on formular likes this:
isAlert = (Diff5m >= 10 && Diff10m >= 15 && Diff30m >= 40)
where Diff is Different Percentage in Absolute value.
Unfortunately I don't save my "pure" data for building neural network, for example, when it detects anomaly, I modified that it is not an anomaly anymore.
I would like to add some attributes to my input for model, such as isMaintenance, isPromotion, isHoliday, etc. but sometimes it leads to overfitting.
I also want to my NN can adjust baseline over the time, for example, when my Service is more popular, etc.
There are any hints on these aims?
Thanks
I would say that an anomaly is an unusual outcome, i.e. a outcome that's not expected given the inputs. As you've figured out, there are a few variables that are expected to influence CPU and RAM usage. So why not feed those to the network? That's the whole point of Machine Learning. Your network will make a prediction of CPU usage, taking into account the sales volume, whether there is (or was) a maintenance window, etc.
Note that you probably don't need an isPromotion input if you include actual sales volumes. The former is a discrete input, and only captures a fraction of the information present in the totalSales input
Machine Learning definitely needs data. If you threw that away, you'll have to restart capturing it. As for adjusting the baseline, you can achieve that by overweighting recent input data.

Data transmission using RF with raspberryPi

I have a project that consisted of transmitting data wirelessly from 15 tractors to a station, the maximum distance between tractor and station is 13 miles. I used a raspberry pi 3 to collect data from tractors. with some research I found that there is no wifi or GSM coverage so the only solution is to use RF communication using VHF. so is that possible with raspberry pi or I must add a modem? if yes, what is the criterion for choosing a modem? and please if you have any other information tell me?
and thank you for your time.
I had a similar issue but possibly a little more complex. I needed to cover a maximum distance of 22 kilometres and I wanted to monitor over 100 resources ranging from breeding stock to fences and gates etc. I too had no GSM access plus no direct line of sight access as the area is hilly and the breeders like the deep valleys. The solution I used was to make my own radio network using cheap radio repeaters. Everything was battery operated and was driven by the receivers powering up the transmitters. This means that the units consume only 40 micro amps on standby and when the transmitters transmit, in my case they consume around 100 to 200 milliamps.
In the house I have a little program that transmits a poll to the receivers every so often and waits for the units to reply. This gives me a big advantage because I can, via the repeater trail (as each repeater, the signal goes through, adds its code to the returning message) actually determine were my stock are.
Now for the big issue, how long do the batteries last? Well each unit has a 18650 battery. For the fence and gate controls this is charged by a small 5 volt solar panel and after 2 years running time I have not changed any of them. For the cattle units the length of time between charges depends solely on how often you poll the units (note each unit has its own code) with one exception (a bull who wants to roam and is a real escape artist) I only poll them once or twice a day and I swap the battery every two weeks.
The frequency I use is 433Mhz and the radio transmitters and receivers are very cheap ( less then 10 cents a pair if you by them in Australia) with a very small Attiny (I think) arduino per unit (around 30 cents each) and a length on wire (34.6cm long as an aerial) for the cattle and 69.2cm for the repeaters. Note these calculations are based on the frequency used i.e. 433Mhz.
As I had to install lots of the repeaters I contacted an organisation in China (sorry they no longer exist) and they created a tiny waterproof and rugged capsule that contained everything, while also improving on the design (range wise while reducing power) at a cost of $220 for 100 units not including batterys. I bought one lot as a test and now between myself and my neighbours we bought another 2000 units for only $2750.
In my case this was paid for in less then three months when during calving season I knew exactly were they were calving and was on site to assist. The first time I used it we saved a mother who was having a real issue.
To end this long message I am not an expert but I had an idea and hired people who were and the repeater approach certainly works over long distances and large areas (42 square kilometres).
Following on from the comments above, I'm not sure where you are located but spectrum around the 400mhz range is licensed in many countries so it would be worth checking exactly what you can use.
If this is your target then this is UHF rather than VHF so if you search for 'Raspberry PI UHF shield' or 'Raspberry PI UHF module' you will find some examples of cheap hardware you can add to your raspberry pi to support communication over these frequencies. Most of the results should include some software examples also.
There are also articles on using the pins on the PI to transmit directly by modulating the voltage them - this is almost certainly going to interfere with other communications so I doubt it would meet your needs.

Measure the electricity consumed by a browser to render a webpage

Is there a way to calculate the electricity consumed to load and render a webpage (frontend)? I was thinking of a 'test' made with phantomjs for example:
load a web page
scroll to the bottom
And measure how much electricity was needed. I can perhaps extrapolate from CPU cycle. But phantomjs is headless, rendering in real browser is certainly different. Perhaps it's impossible to do real measurements.. but with an index it may be possible to compare websites.
Do you have other suggestions?
It's pretty much impossible to measure this internally in modern processors (anything more recent than 286). By internally, I mean by counting cycles. This is because different parts of the processor consume different levels of energy per cycle depending upon the instruction.
That said, you can make your measurements. Stick a power meter between the wall and the processor. Here's a procedure:
Measure the baseline energy usage, i.e. nothing running except the OS and the browser, and the browser completely static (i.e. not doing anything). You need to make sure that everything is stead state (SS) meaning start your measurements only after several minutes of idle.
Measure the usage doing the operation you want. Again, you want to avoid any start up and stopping work, so make sure you start measuring at least 15 seconds after you start the operation. Stopping isn't an issue since the browser will execute any termination code after you finish your measurement.
Sounds simple, right? Unfortunately, because of the nature of your measurements, there are some gotchas.
Do you recall your physics classes (or EE classes) that talked about signal to noise ratios? Well, a scroll down uses very little energy, so the signal (scrolling) is well in the noise (normal background processes). This means you have to take a LOT of samples to get anything useful.
Your browser startup energy usage, or anything else that uses a decent amount of processing, is much easier to measure (better signal to noise ratio).
Also, make sure you understand the underlying electronics. For example, power is VA (voltage*amperage) where both V and A are in phase. I don't think this will be an issue since I'm pretty sure they are in phase for computers. Also, any decent power meter understands the difference.
I'm guessing you intend to do this for mobile devices. Your measurements will only be roughly the same from processor to processor. This is due to architectural differences from generation to generation, and from manufacturer to manufacturer.
Good luck.