Swift - Unit testing private variables and methods - swift

I'm trying to test a class but I'm kind of confused as to what to test. Here is the class I want to unit test:
class CalculatorBrain {
private var accumulator = 0.0
func setOperand(operand: Double) {
accumulator = operand
}
var result: Double {
return accumulator
}
private var operations: Dictionary<String, Operation> = [
"=" : .Equals,
"π" : .Constant(M_PI),
"e" : .Constant(M_E),
"±" : .UnaryOperation({ (op1: Double) -> Double in return -op1 }),
"√" : .UnaryOperation(sqrt ),
"cos": .UnaryOperation(cos),
"+" : .BinaryOperation({ (op1: Double, op2: Double) -> Double in return op1 + op2 }),
"−" : .BinaryOperation({ (op1: Double, op2: Double) -> Double in return op1 - op2 }),
"×" : .BinaryOperation({ (op1: Double, op2: Double) -> Double in return op1 * op2 }),
"÷" : .BinaryOperation({ (op1: Double, op2: Double) -> Double in return op1 / op2 })
]
private enum Operation {
case Constant(Double)
case UnaryOperation((Double) -> Double)
case BinaryOperation((Double, Double) -> Double)
case Equals
}
func performOperation(symbol: String) {
if let operation = operations[symbol] {
switch operation {
case .Constant(let value):
accumulator = value
case .UnaryOperation(let function):
accumulator = function(accumulator)
case .BinaryOperation(let function):
executePendingBinaryOperation()
pendingBinaryOperation = PendingBinaryOperationInfo(binaryOperation: function, firstOperand: accumulator)
case .Equals:
executePendingBinaryOperation()
}
}
}
private var pendingBinaryOperation: PendingBinaryOperationInfo?
private struct PendingBinaryOperationInfo {
var binaryOperation: (Double, Double) -> Double
var firstOperand: Double
}
private func executePendingBinaryOperation() {
if let pending = pendingBinaryOperation {
accumulator = pending.binaryOperation(pending.firstOperand, accumulator)
pendingBinaryOperation = nil
}
}
}
For the code above, what would be good tests.
Is it worth testing every single operation (+, -, *, /, etc) in the dictionary operations?
Is it worth testing the private methods?

You can't test private methods in Swift using #testable. You can only test methods marked either internal or public. As the docs say:
Note: #testable provides access only for “internal” functions;
“private” declarations are not visible outside of their file even when
using #testable.
Read more here

Unit testing should be considered black box testing, which means you don't care about the internals of the unit you test. You are mainly interested to see what's the unit output based on the inputs you give it in the unit test.
Now, by outputs we can assert on several things:
the result of a method
the state of the object after acting on it,
the interaction with the dependencies the object has
In all cases, we are interested only about the public interface, since that's the one that communicates with the rest of the world.
Private stuff don't need to have unit tests simply because any private item is indirectly used by a public one. The trick is to write enough tests that exercise the public members so that the private ones are fully covered.
Also, one important thing to keep in mind is that unit testing should validate the unit specifications, and not its implementation. Validating implementation details adds a tight coupling between the unit testing code and the tested code, which has a big disadvantage: if the tested implementation detail changes, then it's likely that the unit test will need to be changed also.
Writing unit tests in a black box manner means that you'll be able to refactor all the code in those units without worrying that by also having to change the tests you risk into introducing bugs in the unit testing code. Unreliable unit tests are sometimes worse than a lack of tests, as tests that give false positives are likely to hide actual bugs in your code.

Although I agree with not testing private stuff, and I'd rather prefer to test just public interface, sometimes I've needed to test something inside a class that was hidden (like a complex state machine). For these cases what you can do is:
import Foundation
public class Test {
internal func testInternal() -> Int {
return 1
}
public func testPublic() -> Int {
return 2
}
// we can't test this!
private func testPrivate() -> Int {
return 3
}
}
// won't ship with production code thanks to #if DEBUG
// add a good comment with "WHY this is needed 😉"
#if DEBUG
extension Test {
public func exposePrivate() -> Int {
return self.testPrivate()
}
}
#endif
Then you can do this:
import XCTest
#testable import TestTests
class TestTestsTests: XCTestCase {
func testExample() {
let sut = Test()
XCTAssertEqual(1, sut.testInternal())
}
func testPrivateExample() {
let sut = Test()
XCTAssertEqual(3, sut.exposePrivate())
}
}
I understand perfectly that this is a hack. But knowing this trick can save your bacon in the future or not. Do not abuse this trick.

Diego's answer is clever but it is possible to go further.
Go into your project editor and define a new Testing Configuration by duplicating the Debug configuration.
Edit your scheme's Test action so that the build configuration is Testing.
Now edit your test target's build settings to define an additional Active Compilation Conditions value for the Testing configuration, "TESTING".
Now you can say #if TESTING, as distinct from mere DEBUG.
I use this, for example, to declare initializers that only a test can see.

Short answer is you can't. Private parts can't be tested.
However, I don't think "you shouldn't" is a valid answer. I used to think in this way, but real life scenarios are more complicated than we would expect. At some point, I need to write a FileScanner class as part of a framework, which conforms to a Scanner protocol that only has a scan(filename: String) function. Of course FileScanner.scan(filename: String) needs to be public, but how about the functions that support scan?
As I mentioned in a comment above, I want to:
keep the interface as clean as possible, and
limit access level as private as possible
Which means I don't want to expose other functions that are not used by other classes. I really hope there's a #testable modifier at function level (works like #discardable etc) but since it's not really there in Swift, we unfortunately only have 2 options:
Write unit tests for scan only, which is suggested by most people. This requires a lot of input files in the unit test bundle (not necessarily Target, as I'm using SPM only without Xcode, and it's just a Tests directory), and is hard to create specific cases for individual functions. Depends on how complex scan is, it's not really a good approach.
Expose private other functions. I ended up with this approach, and make a convention, that if a function doesn't have any modifier, we assume it's internal and can be used by other files in the same bundle (Target), just not public. But if we specifically mark it as internal func etc, it means we just want to make it #testable and it should never be used by other classes in the same bundle.
So, my conclusion is that even you can't test private methods and properties in Swift yet, I consider it as a limitation of Swift but not an invalid use case.

I found this link which is saying something similar with Cristik.
Basically, you are asking the wrong question, you should not be seeking to test the class/functions marked with "private".

I think actually don’t need to test of private members.
But if you want to use to private members(properties & methods) at UnitTest, there is a way that use Protocol.
Protocol PrivateTestable {
associatedtype PrivateTestCase
var privateTestCase: PrivateTestCase {get}
}
And try to extension the protocol in same file (target class file).
extension CalculatorBrain: PrivateTestable {
struct PrivateTestCase {
private let target: CalculatorBrain
var pendingBinaryOperation: PendingBinaryOperationInfo? {
return target.pendingBinaryOperation
}
init(target: CalculatorBrain) {
self.target = target
}
}
var privateTestable: PrivateTestCase {
return PrivateTestCase(target: self)
}
}
Then you can use pendingBinaryOperation in UnitTest
class CalculatorBrainTest: XCTestCase {
func testPendingBinaryOperation() {
let brain = CalculatorBrain()
XCTAssertNotNil(brain.privateTestCase.pendingBinaryOperation)
}
}

If you really want to get a private field in tests, you can use the Mirror class:
let testClass = CalculatorBrain()
let mirror = Mirror(reflecting: testClass)
func extract<T>(variable name: StaticString, mirror: Mirror?) -> T? {
guard let mirror = mirror else {
return nil
}
guard let descendant = mirror.descendant("\(name)") as? T
else {
return extract(variable: name, mirror: mirror)
}
return descendant
}
let result: Dictionary<String, Any>? = extract(variable: "operations", mirror: mirror)
print(result!)
For example, I made an extension of the class to check the output result
extension CalculatorBrain {
var test: Any {
operations
}
}
print("")
print(testClass.test)
As a result, I got this:
Mirror
["−": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function)),
"√": __lldb_expr_24.CalculatorBrain.Operation.UnaryOperation((Function)),
"+": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function)),
"÷": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function)),
"e": __lldb_expr_24.CalculatorBrain.Operation.Constant(2.718281828459045),
"π": __lldb_expr_24.CalculatorBrain.Operation.Constant(3.141592653589793),
"cos": __lldb_expr_24.CalculatorBrain.Operation.UnaryOperation((Function)),
"=": __lldb_expr_24.CalculatorBrain.Operation.Equals,
"±": __lldb_expr_24.CalculatorBrain.Operation.UnaryOperation((Function)),
"×": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function))]
Extension
["×": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function)),
"÷": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function)),
"√": __lldb_expr_24.CalculatorBrain.Operation.UnaryOperation((Function)),
"=": __lldb_expr_24.CalculatorBrain.Operation.Equals,
"−": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function)),
"±": __lldb_expr_24.CalculatorBrain.Operation.UnaryOperation((Function)),
"e": __lldb_expr_24.CalculatorBrain.Operation.Constant(2.718281828459045),
"cos": __lldb_expr_24.CalculatorBrain.Operation.UnaryOperation((Function)),
"π": __lldb_expr_24.CalculatorBrain.Operation.Constant(3.141592653589793),
"+": __lldb_expr_24.CalculatorBrain.Operation.BinaryOperation((Function))]
Private methods will not be tested (at least I do not know how to do this without changing the main code)

Related

Testing multiple methods calling order

I have 3 methods that are related to a specific class which is defined as follows:
class MyClass: NSObject {
func myMethod() {
methodA()
methodB()
methodC()
}
func methodA() {}
func methodB() {}
func methodC() {}
}
I need to test that myMethod has called all 3 methods by the order they are implemented: methodA then methodB then methodC
to be tested with XCode Unit Tests, regardless of the implementation of these methods, I have created a subclass in the test case that looks like the following:
class ChildClass: MyClass {
var method1CallingDate: Date?
var method2CallingDate: Date?
var method3CallingDate: Date?
override func methodA() {
super.methodA()
method1CallingDate = Date()
}
override func methodB() {
super.methodB()
method2CallingDate = Date()
}
override func methodC() {
super.methodC()
method3CallingDate = Date()
}
}
Now in the test method, I start by calling those 3 methods, then I assert that all three dates are not nil first, then compare them like this:
XCTAssertLessThan(method1CallingDate, method2CallingDate)
XCTAssertLessThan(method2CallingDate, method3CallingDate)
The problem I ran into was that the test sometimes succeeds and sometimes fails, i guess due to Date object is (randomly) the same between 2 of the method calls.
Is there a better way to test the order of calling multiple methods ?
p.s. this is easily done in the Android SDK org.mockito.Mockito.inOrder
First, make a mock object that records the order. No dates, no strings. Just an enumeration.
class MockMyClass: MyClass {
enum invocation {
case methodA
case methodB
case methodC
}
private var invocations: [invocation] = []
override func methodA() {
invocations.append(.methodA)
}
override func methodB() {
invocations.append(.methodB)
}
override func methodC() {
invocations.append(.methodC)
}
func verify(expectedInvocations: [invocation], file: StaticString = #file, line: UInt = #line) {
if invocations != expectedInvocations {
XCTFail("Expected \(expectedInvocations), but got \(invocations)", file: file, line: line)
}
}
}
Then in the test:
mock.verify(expectedInvocations: [.methodA, .methodB, .methodC])
No async waiting. Simple to call. Clear failure messages.
You could do something like this using a String to keep track of the order:
class ChildClass: MyClass {
var order = ""
override func methodA() {
super.methodA()
order = String((order + "A").suffix(3))
}
override func methodB() {
super.methodB()
order = String((order + "B").suffix(3))
}
override func methodC() {
super.methodC()
order = String((order + "C").suffix(3))
}
}
Then, just check that order is "ABC".
Or, if it is valid to call B multiple times between A and C:
class ChildClass: MyClass {
var order = ""
override func methodA() {
super.methodA()
order = order.replacingOccurrences(of: "A", with: "") + "A"
}
override func methodB() {
super.methodB()
order = order.replacingOccurrences(of: "B", with: "") + "B"
}
override func methodC() {
super.methodC()
order = order.replacingOccurrences(of: "C", with: "") + "C"
}
}
Example:
let c = ChildClass()
c.methodA()
c.methodB()
c.methodB()
c.methodC()
print(c.order)
ABC
I've become a fan of using XCTestExpectation for this kind of thing. Here's an option.
class MyTestableClass: MyClass {
var methodAHandler: (() -> Void)?
// ...
override func methodA() {
methodAHandler?()
super.methodA()
}
And then in your test case
let expA = XCTestExpectation(description: "Method A Called")
let expB = ...
let expo = ...
objectUnderTest.methodAHandler = { expA.fulfill() }
/// ...
objectUnderTest.myMethod()
// ensure you use the enforceOrder param, which is optional
wait(for: [expA, expB, expC], timeout: 1.0, enforceOrder: true)
XCTestExpectation is made more for async testing, so the wait is slightly funny. But, it does do what you need, and would keep working even if eventually the internals of myMethod become asynchronous for some reason.
While I haven't used it myself, you also might want to check out Cuckoo. It's a mocking framework for Swift.
You're not asking the right question here. From a unit testing point of view you should not know/care that the tested method calls other methods, or even if other methods exist.
Unit tests should validate some observable result of the tested method. Anything that happens inside the tested method is irrelevant in the context of a unit test.
That's because unit tests should validate that the unit behaves as expected, i.e. they should validate against the specifications, not against the implementation.
Let's consider a simple example, unit testing a isPrime(n) function. Unless you're doing performance testing, you only care if the function returns the appropriate result for a couple of numbers. You don't care if the function checks all possible divisors, or if it uses a database of all known prime numbers, or if delegates the prime check to some 3rd party library/service.
The situation is not much different from yours. The fact that the three methods are called in a certain order needs to be validate via the external interface of the tested unit. For example if the three methods make API calls, then mock the API client and expect it to be requested three times, and with the expected URL/payload. If calling the three methods don't result in any noticeable changes, then there's not much you can test from the start, so again the fact that three methods are called in a certain order become irrelevant.
Unit testing is about validating the result of the execution of that unit, not anything more. Now, in an imperative programming language, the input->output functions are a minority, however this doesn't mean that we can't indirectly test if the function behaves as expected. You can use mocks, or validate some properties of the object after the function executes. Again, if there are no ways of externally checking the order of methods, then you have no specs to validate against.

Protocols, Structs, but no concrete type

Ok I have a protocol called Environment
protocol Environment {
var rootURL: String {get}
}
Then two structs:
struct Production: Environment {
var rootURL = "www.api.mybackend.com/v1"
}
struct Development: Environment {
var rootURL = "www.api.mydevelopmentbackend.com/v1"
}
A settings object with a function that retrieves the environment:
class Settings {
func getEnvironment<T>() -> T where T: Environment {
let environmentRaw = self.retreiveEnvironmentFromLocalStore()
switch environmentRaw {
case 0:
return Development() as! T
case 1:
return Production() as! T
default:
return Development() as! T
}
}
func retreiveEnvironmentFromLocalStore() -> Int {
//Realm, SQLLite, Core Date, I don't really care for this example.
//Let's just say it defaults to returning 1
}
}
I really want to keep moving in a Protocol Oriented Programming direction but now when I call this function on a settings object and try to use the rootURL property the compiler complains it can't figure out the type. So, to better my understanding and to maybe find a solution:
1) Why does it care about the type if I am accessing a property defined by a protocol that at the very least it knows the returning type conforms to?
2) Structs don't have inheritance. Should I define a base class and forget about generics?
3) Can I make my getEnvironment function better? I don't like force casting, it seems like a code smell.
4) Am I even using generics correctly here?
EDIT 1:
To be clear, I want one function that returns a struct that I know will have this property.
Am I even using generics correctly here?
No, I don't think so. You are saying that getEnvironment will return T which can be any type that the client code specifies, as long as it implements Environment. However, the implementation of the method doesn't do this. It will only return two kinds of Environments, and which type it returns is not determined by the client code. The type returned depends on what retreiveEnvironmentFromLocalStore returns. Hence, generics is not suitable in this case.
Since the type of environment it returns is decided by the implementation of the method, instead of the client code, you should make use of polymorphism here - make it return an Environment instead:
func getEnvironment() -> Environment {
let environmentRaw = self.retreiveEnvironmentFromLocalStore()
switch environmentRaw {
case 0:
return Development()
case 1:
return Production()
default:
return Development()
}
}
I really want to keep moving in a Protocol Oriented Programming direction
I suggest instead you try to move in a clear, understandable code direction, regardless of what the trendy orientation is.
Here's your function declaration:
func getEnvironment() -> T where T: Environment
This says that getEnvironment() will return an object of some type T, where T is deduced at compile time based on the code that calls getEnvironment().
What types could T be? It could be either Production or Development. For example, you could write:
let e: Production = Settings().getEnvironment()
This lets the compiler deduce that getEnvironment() returns a Production (which is an Environment) at this call site.
But there's a problem: getEnvironment() might try to return a Development anyway, based on the random number generator inside retreiveEnvironmentFromLocalStore. Then you'll get a crash at run time when it fails to cast Development to Production.
Why do you think getEnvironment() needs to be generic at all? Based on the code in your question, it shouldn't be.
import Foundation
protocol Environment {
var rootURL: String {get}
}
struct Production: Environment {
var rootURL = "www.api.mybackend.com/v1"
}
struct Development: Environment {
var rootURL = "www.api.mydevelopmentbackend.com/v1"
}
class Settings {
func getEnvironment() -> Environment {
let environmentRaw = self.retreiveEnvironmentFromLocalStore()
switch environmentRaw {
case 1: return Production()
default: return Development()
}
}
func retreiveEnvironmentFromLocalStore() -> Int {
return Int(arc4random())
}
}
let settings = Settings()
let e = settings.getEnvironment()
Style note: the Swift API Design Guidelines advise us to
Name functions and methods according to their side-effects
Those without side-effects should read as noun phrases, e.g. x.distance(to: y), i.successor().
Unless the methods in Settings have important side effects, better names would be environment() and rawEnvironmentFromLocalStore().

what is the difference between these two in swift 3 [duplicate]

In the Introduction to Swift WWDC session, a read-only property description is demonstrated:
class Vehicle {
var numberOfWheels = 0
var description: String {
return "\(numberOfWheels) wheels"
}
}
let vehicle = Vehicle()
println(vehicle.description)
Are there any implications to choosing the above approach over using a method instead:
class Vehicle {
var numberOfWheels = 0
func description() -> String {
return "\(numberOfWheels) wheels"
}
}
let vehicle = Vehicle()
println(vehicle.description())
It seems to me that the most obvious reasons for choosing a read-only computed property are:
Semantics - in this example it makes sense for description to be a property of the class, rather than an action it performs.
Brevity/Clarity - prevents the need to use empty parentheses when getting the value.
Clearly the above example is overly simple, but are there other good reasons to choose one over the other? For example, are there some features of functions or properties that would guide your decision of which to use?
N.B. At first glance this seems like quite a common OOP question, but I'm keen to know of any Swift-specific features that would guide best practice when using this language.
It seems to me that it's mostly a matter of style: I strongly prefer using properties for just that: properties; meaning simple values that you can get and/or set. I use functions (or methods) when actual work is being done. Maybe something has to be computed or read from disk or from a database: In this case I use a function, even when only a simple value is returned. That way I can easily see whether a call is cheap (properties) or possibly expensive (functions).
We will probably get more clarity when Apple publishes some Swift coding conventions.
Well, you can apply Kotlin 's advices https://kotlinlang.org/docs/reference/coding-conventions.html#functions-vs-properties.
In some cases functions with no arguments might be interchangeable
with read-only properties. Although the semantics are similar, there
are some stylistic conventions on when to prefer one to another.
Prefer a property over a function when the underlying algorithm:
does not throw
complexity is cheap to calculate (or caсhed
on the first run)
returns the same result over invocations
While a question of computed properties vs methods in general is hard and subjective, currently there is one important argument in the Swift's case for preferring methods over properties. You can use methods in Swift as pure functions which is not true for properties (as of Swift 2.0 beta). This makes methods much more powerful and useful since they can participate in functional composition.
func fflat<A, R>(f: (A) -> () -> (R)) -> (A) -> (R) {
return { f($0)() }
}
func fnot<A>(f: (A) -> Bool) -> (A) -> (Bool) {
return { !f($0) }
}
extension String {
func isEmptyAsFunc() -> Bool {
return isEmpty
}
}
let strings = ["Hello", "", "world"]
strings.filter(fnot(fflat(String.isEmptyAsFunc)))
There is a difference:
If you use a property you can then eventually override it and make it read/write in a subclass.
Since the runtime is the same, this question applies to Objective-C as well. I'd say, with properties you get
a possibility of adding a setter in a subclass, making the property readwrite
an ability to use KVO/didSet for change notifications
more generally, you can pass property to methods that expect key paths, e.g. fetch request sorting
As for something specific to Swift, the only example I have is that you can use #lazy for a property.
In the read-only case, a computed property should not be considered semantically equivalent to a method, even when they behave identically, because dropping the func declaration blurs the distinction between quantities that comprise the state of an instance and quantities that are merely functions of the state. You save typing () at the call site, but risk losing clarity in your code.
As a trivial example, consider the following vector type:
struct Vector {
let x, y: Double
func length() -> Double {
return sqrt(x*x + y*y)
}
}
By declaring the length as a method, it’s clear that it’s a function of the state, which depends only on x and y.
On the other hand, if you were to express length as a computed property
struct VectorWithLengthAsProperty {
let x, y: Double
var length: Double {
return sqrt(x*x + y*y)
}
}
then when you dot-tab-complete in your IDE on an instance of VectorWithLengthAsProperty, it would look as if x, y, length were properties on an equal footing, which is conceptually incorrect.
From the performance perspective, there seems no difference. As you can see in the benchmark result.
gist
main.swift code snippet:
import Foundation
class MyClass {
var prop: Int {
return 88
}
func foo() -> Int {
return 88
}
}
func test(times: u_long) {
func testProp(times: u_long) -> TimeInterval {
let myClass = MyClass()
let starting = Date()
for _ in 0...times {
_ = myClass.prop
}
let ending = Date()
return ending.timeIntervalSince(starting)
}
func testFunc(times: u_long) -> TimeInterval {
let myClass = MyClass()
let starting = Date()
for _ in 0...times {
_ = myClass.prop
}
let ending = Date()
return ending.timeIntervalSince(starting)
}
print("prop: \(testProp(times: times))")
print("func: \(testFunc(times: times))")
}
test(times: 100000)
test(times: 1000000)
test(times: 10000000)
test(times: 100000000)
Output:
prop: 0.0380070209503174
func: 0.0350250005722046
prop: 0.371925950050354
func: 0.363085985183716
prop: 3.4023300409317
func: 3.38373708724976
prop: 33.5842199325562
func: 34.8433820009232
Program ended with exit code: 0
In Chart:
There are situations where you would prefer computed property over normal functions. Such as: returning the full name of an person. You already know the first name and the last name. So really the fullName property is a property not a function. In this case, it is computed property (because you can't set the full name, you can just extract it using the firstname and the lastname)
class Person{
let firstName: String
let lastName: String
init(firstName: String, lastName: String){
self.firstName = firstName
self.lastName = lastName
}
var fullName :String{
return firstName+" "+lastName
}
}
let william = Person(firstName: "William", lastName: "Kinaan")
william.fullName //William Kinaan
Semantically speaking, computed properties should be tightly coupled with the intrinsic state of the object - if other properties don't change, then querying the computed property at different times should give the same output (comparable via == or ===) - similar to calling a pure function on that object.
Methods on the other hand come out of the box with the assumption that we might not always get the same results, because Swift doesn't have a way to mark functions as pure. Also, methods in OOP are considered actions, which means that executing them might result in side effects. If the method has no side effects, then it can safely be converted to a computed property.
Note that both of the above statements are purely from a semantic perspective, as it might well happen for computed properties to have side effects that we don't expect, and methods to be pure.
Historically description is a property on NSObject and many would expect that it continues the same in Swift. Adding parens after it will only add confusion.
EDIT:
After furious downvoting I have to clarify something - if it is accessed via dot syntax, it can be considered a property. It doesn't matter what's under the hood. You can't access usual methods with dot syntax.
Besides, calling this property did not require extra parens, like in the case of Swift, which may lead to confusion.
An updated/fixed version of Benjamin Wen's answer incorporating Cristik's suggestion.
class MyClass {
var prop: Int {
return 88
}
func foo() -> Int {
return 88
}
}
func test(times: u_long) {
func testProp(times: u_long) -> TimeInterval {
let myClass = MyClass()
let starting = CACurrentMediaTime()
for _ in 0...times {
_ = myClass.prop
}
let ending = CACurrentMediaTime()
return ending - starting
}
func testFunc(times: u_long) -> TimeInterval {
let myClass = MyClass()
let starting = CACurrentMediaTime()
for _ in 0...times {
_ = myClass.foo()
}
let ending = CACurrentMediaTime()
return ending - starting
}
print("prop: \(testProp(times: times))")
print("func: \(testFunc(times: times))")
}
test(times: 100000)
test(times: 1000000)
test(times: 10000000)
test(times: 100000000)

How send generic value through the function? [duplicate]

I have code that follows the general design of:
protocol DispatchType {}
class DispatchType1: DispatchType {}
class DispatchType2: DispatchType {}
func doBar<D:DispatchType>(value:D) {
print("general function called")
}
func doBar(value:DispatchType1) {
print("DispatchType1 called")
}
func doBar(value:DispatchType2) {
print("DispatchType2 called")
}
where in reality DispatchType is actually a backend storage. The doBarfunctions are optimized methods that depend on the correct storage type. Everything works fine if I do:
let d1 = DispatchType1()
let d2 = DispatchType2()
doBar(value: d1) // "DispatchType1 called"
doBar(value: d2) // "DispatchType2 called"
However, if I make a function that calls doBar:
func test<D:DispatchType>(value:D) {
doBar(value: value)
}
and I try a similar calling pattern, I get:
test(value: d1) // "general function called"
test(value: d2) // "general function called"
This seems like something that Swift should be able to handle since it should be able to determine at compile time the type constraints. Just as a quick test, I also tried writing doBar as:
func doBar<D:DispatchType>(value:D) where D:DispatchType1 {
print("DispatchType1 called")
}
func doBar<D:DispatchType>(value:D) where D:DispatchType2 {
print("DispatchType2 called")
}
but get the same results.
Any ideas if this is correct Swift behavior, and if so, a good way to get around this behavior?
Edit 1: Example of why I was trying to avoid using protocols. Suppose I have the code (greatly simplified from my actual code):
protocol Storage {
// ...
}
class Tensor<S:Storage> {
// ...
}
For the Tensor class I have a base set of operations that can be performed on the Tensors. However, the operations themselves will change their behavior based on the storage. Currently I accomplish this with:
func dot<S:Storage>(_ lhs:Tensor<S>, _ rhs:Tensor<S>) -> Tensor<S> { ... }
While I can put these in the Tensor class and use extensions:
extension Tensor where S:CBlasStorage {
func dot(_ tensor:Tensor<S>) -> Tensor<S> {
// ...
}
}
this has a few side effects which I don't like:
I think dot(lhs, rhs) is preferable to lhs.dot(rhs). Convenience functions can be written to get around this, but that will create a huge explosion of code.
This will cause the Tensor class to become monolithic. I really prefer having it contain the minimal amount of code necessary and expand its functionality by auxiliary functions.
Related to (2), this means that anyone who wants to add new functionality will have to touch the base class, which I consider bad design.
Edit 2: One alternative is that things work expected if you use constraints for everything:
func test<D:DispatchType>(value:D) where D:DispatchType1 {
doBar(value: value)
}
func test<D:DispatchType>(value:D) where D:DispatchType2 {
doBar(value: value)
}
will cause the correct doBar to be called. This also isn't ideal, as it will cause a lot of extra code to be written, but at least lets me keep my current design.
Edit 3: I came across documentation showing the use of static keyword with generics. This helps at least with point (1):
class Tensor<S:Storage> {
// ...
static func cos(_ tensor:Tensor<S>) -> Tensor<S> {
// ...
}
}
allows you to write:
let result = Tensor.cos(value)
and it supports operator overloading:
let result = value1 + value2
it does have the added verbosity of required Tensor. This can made a little better with:
typealias T<S:Storage> = Tensor<S>
This is indeed correct behaviour as overload resolution takes place at compile time (it would be a pretty expensive operation to take place at runtime). Therefore from within test(value:), the only thing the compiler knows about value is that it's of some type that conforms to DispatchType – thus the only overload it can dispatch to is func doBar<D : DispatchType>(value: D).
Things would be different if generic functions were always specialised by the compiler, because then a specialised implementation of test(value:) would know the concrete type of value and thus be able to pick the appropriate overload. However, specialisation of generic functions is currently only an optimisation (as without inlining, it can add significant bloat to your code), so this doesn't change the observed behaviour.
One solution in order to allow for polymorphism is to leverage the protocol witness table (see this great WWDC talk on them) by adding doBar() as a protocol requirement, and implementing the specialised implementations of it in the respective classes that conform to the protocol, with the general implementation being a part of the protocol extension.
This will allow for the dynamic dispatch of doBar(), thus allowing it to be called from test(value:) and having the correct implementation called.
protocol DispatchType {
func doBar()
}
extension DispatchType {
func doBar() {
print("general function called")
}
}
class DispatchType1: DispatchType {
func doBar() {
print("DispatchType1 called")
}
}
class DispatchType2: DispatchType {
func doBar() {
print("DispatchType2 called")
}
}
func test<D : DispatchType>(value: D) {
value.doBar()
}
let d1 = DispatchType1()
let d2 = DispatchType2()
test(value: d1) // "DispatchType1 called"
test(value: d2) // "DispatchType2 called"

What is the practical use of nested functions in swift? [duplicate]

This question already has answers here:
What is the benefit of nesting functions (in general/in Swift)
(3 answers)
Closed 6 years ago.
What is the practical use of nested functions? It only makes the code harder to read and doesn't make a particular case easy.
func chooseStepFunction(backwards: Bool) -> (Int) -> Int {
func stepForward(input: Int) -> Int { return input + 1 }
func stepBackward(input: Int) -> Int { return input - 1 }
return backwards ? stepBackward : stepForward
}
Source
I think the core of your question is: Why not use private function instead of an ugly nested function?
Simply put, nested functions can ease readability and encapsulation.
Similarly one can ask, what's the practical use of local variables (of a function) vs instance variables? To me it's really the same question. Only that nested functions are less common.
Readability
A private function can still be accessed from other functions in your class. The same isn't true for nested functions. You're telling your developers, this only belongs to this function (contrary to private functions where they belong to the entire class). Back off and don't mess with it, if you need similar capability, go write your own!
The moment you see a private function you have to think, which function will call it. Is it the first function or the last? Let me search for it. Yet with a nested function you don't have to look up and down. It's already known which function will call it.
Also if you have 5 private functions, where 3 of them are called in a single public function then by nesting them all under the same public function you're communicating to other developers that these private functions are related.
In short, just as you don't want to pollute your public namespace, you don't want to pollute your private namespace.
Encapsulation
Another convenience is that it can access all the local parameters to its parent function. You no longer need to pass them around. This would eventually mean one less function to test, because you've wrapped one function inside another. Additionally if you're calling that function in a block of the non-nested function, then you don't have to wrap it into self or think about creating leaks. It's because the lifecycle of the nested function is tied to the lifecycle of its containing function.
Another use case would be when you have very similar functions in your class, say like you have:
extractAllHebrewNames() // right to left language
extractAllAmericanNames() // left to right language
extractAllJapaneseNames() // top to bottom language
Now if you have a private func named printName (that prints names), it would work if you switch the case based on language, but what if just you don't/can't do that. Instead you can write your own nested functions (They could all now have the exact same name. because each is in a different namespace.) inside each separate extract function and print the names.
Your question is somewhat similar, to why not use 'if else' instead of a 'Switch case.
I think it's just a convenience provided (for something that can be dealt without using nested functions).
NOTE: A nested function should be written before it's callsite within the function.
Error: use of local variable 'nested' before its declaration
func doSomething(){
nested()
func nested(){
}
}
No Error:
func doSomething(){
func nested(){
}
nested()
}
Similarly a local variable used in a nested function must be declared before the nested function
BE AWARE:
If you're using nested functions, then the compiler won't enforce self checks.
The compiler is not smart enough. It will NOT throw error of:
Call to method 'doZ' in closure requires explicit 'self.' to make capture semantics explicit
This could result in hard to find memory leaks. e.g.
class P {
var name: String
init(name: String) {
print("p was allocated")
self.name = name
}
func weaklyNested() {
weak var _self = self
func doX() {
print("nested:", _self?.name as Any)
}
DispatchQueue.main.asyncAfter(deadline: .now() + 1) {
doX()
}
}
func stronglyNested() {
func doZ() {
print("nested:", name)
}
DispatchQueue.main.asyncAfter(deadline: .now() + 2) {
doZ() // will NOT throw error of: `Call to method 'doZ' in closure requires explicit 'self.' to make capture semantics explicit`
}
}
deinit {
print("class P was deinitialized")
}
}
class H {
var p: P
init(p: P) {
self.p = p
}
}
var h1: H? = H(p: P(name: "john"))
h1?.p.weaklyNested()
h1 = nil // will deallocate immediately, then print nil after 2 seconds
var h2: H? = H(p: P(name: "john"))
h2?.p.stronglyNested()
h2 = nil // will NOT deallocate immediately, will print "john" after 2 seconds, then deallocates
tl;dr solution:
use weak var _self = self and inside the nested function reference to self with the weak reference.
don't use nested functions at all :( Or don't use instance variables inside your nested functions.
This part was written thanks to this original post from Is self captured within a nested function?
One use case is operations on recursive data structures.
Consider, for instance, this code for searching in binary search trees:
func get(_ key: Key) -> Value? {
func recursiveGet(cur: Node) -> Value? {
if cur.key == key {
return cur.val
} else if key < cur.key {
return cur.left != nil ? recursiveGet(cur: cur.left!) : nil
} else {
return cur.right != nil ? recursiveGet(cur: cur.right!) : nil
}
}
if let root = self.root {
return recursiveGet(cur: root)
} else {
return nil
}
}
Of course, you can transform the recursion into a loop, doing away with the nested function. I find recursive code often clearer than iterative variants, though. (Trade off vs. runtime cost!)
You could also define recursiveGet as (private) member outside of get but that would be bad design (unless recursiveGet is used in multiple methods).
There is the principle (since Objective-C) that "code can be data". You can pass code around, store it in a variable, combine it with other code. This is an extremely powerful tool. Frankly, if I didn't have the ability to treat code as data, most of the code I write would be ten times harder to write, and ten times harder to read.
Functions in Swift are just closures, so nested functions make perfectly sense, since this is how you write a closure when you don't want to use one of the many available shortcuts.
In your example, you can create a variable which is also a function like this:
var myStepFunction = chooseStepFunction(true)
myStepFunction(4)
The benefit of nested function is really nice. For example, let's say you are building an app for the calculator, you can have all your logic in one function, as the following:
func doOperation(operation: String) -> ((Double, Double) -> Double)? {
func plus(s: Double, d: Double) -> Double {
return s + d
}
func min(s: Double, d: Double) -> Double{
return s - d
}
switch operation {
case "+":
return plus
case "-" :
return min
default :
return nil
}
}
var myOperationFunction = doOperation("-")?(4, 4) // 0
var myOperationFunction2 = doOperation("+")?(4, 5) //9
In some cases, you are not allowed to see the implementation of some function, or not responsible for them. Then hidding them inside other function is really a good approach. For instance, assume that you colleague is reaponsible for developing the plus and min functions, he/she will do that, and you just use the outer function.
It is deferent from closure, because in clouser, you pass your logic to other logic, which will call yours. It is kind of plugin. For instance, after calling the http request, you can pass the code that you want your app to do when receiving the response from the server