How to apply Fixpoint definitions within proofs in Coq? - coq

I have some trouble understanding how to use some of the things I've defined in Coq within proofs. I have this fragment of definition and functions:
Inductive string : Set :=
| E : string
| s : nat -> string -> string.
Inductive deduce : Set :=
|de : string -> string -> deduce.
Infix "|=" := de.
Inductive Rules : deduce -> Prop :=
| compress : forall (n : nat) (A : string), rule (( s n ( s n A)) |= ( s n A))
| transitive : forall A B C : string, rule (A |= B) -> rule (B |= C) -> rule (A |= C).
Fixpoint RepString (n m : nat): string:=
match n with
|0 => E
|S n => s m ( RepString n m)
end.
I need to prove something apparently easy but I bump into two problems:
Lemma LongCompress (C : string)(n : nat): n >=1 -> Rules
((RepString n 0 ) |= (s 0 E) ).
Proof.
intros.
induction n.
inversion H.
simpl.
apply compress.
So here I have problem one, I get:
"Unable to unify "Rules (s ?M1805 (s ?M1805 ?M1806) |= s ?M1805 ?M1806)" with
"Rules (s 0 (RepString n 0) |- s 0 E)".'"
Now, I can see why I get the error, while technically RepString n 0 is the same as s 0 (s 0 (s 0( ... s 0 E))) I simply can't find the way to let coq know that, I've tried messing with apply compress with like 10 different things I still can't get it right. I need to "unfold" it something like that (of course unfold doesn't work...).
I'm out of ideas and I would very much appreciate any input you have on this!
EDIT FROM NOW ON.
Inductive Rules : deduce -> Prop :=
| compress : forall (n : nat) (A : string), rule (( s n ( s n A)) |= ( s n A))
| transitive : forall A B C : string, rule (A |= B) -> rule (B |= C) -> rule (A |= C)
| inspection : forall (n m : nat) (A : string), m < n -> rule ((s n A) |- (s m A)).
Definition less (n :nat ) (A B : string) := B |= (s n A).
Lemma oneLess (n m : nat): rule (less 0 (RepString n 1) (RepString m 1)) <-> n< m.
I have generalised the lemmas that Anton Trunov helped me prove, but now I bumped into another wall. I think the problem might start with the way I've written the Theorem itself, I will appreciate any ideas.

I'd prove something a little bit more general: for any two non-empty strings of zeros s = 0000...0 and t = 00...0, if length s > length t, then s |= t, i.e.
forall n m,
m <> 0 ->
n > m ->
Rules (RepString n 0 |= RepString m 0).
Here is a helper lemma:
Require Import Coq.Arith.Arith.
Require Import Coq.omega.Omega.
Hint Constructors Rules. (* add this line after the definition of `Rules` *)
Lemma LongCompress_helper (n m k : nat):
n = (S m) + k ->
Rules (RepString (S n) 0 |= RepString (S m) 0).
Proof.
generalize dependent m.
generalize dependent n.
induction k; intros n m H.
- Search (?X + 0 = ?X). rewrite Nat.add_0_r in H.
subst. simpl. eauto.
- apply (transitive _ (RepString n 0) _); simpl in H; rewrite H.
+ simpl. constructor.
+ apply IHk. omega.
Qed.
Now, we can easily prove our advertised general lemma:
Lemma LongCompress_general (n m : nat):
m <> 0 ->
n > m ->
Rules (RepString n 0 |= RepString m 0).
Proof.
intros Hm Hn. destruct n.
- inversion Hn.
- destruct m.
+ exfalso. now apply Hm.
+ apply LongCompress_helper with (k := n - m - 1). omega.
Qed.
It's easy to see that any sufficiently long string of zeros can be compressed into the singleton-string 0:
Lemma LongCompress (n : nat):
n > 1 -> Rules ( RepString n 0 |= s 0 E ).
Proof.
intro H. replace (s 0 E) with (RepString 1 0) by easy.
apply LongCompress_general; auto.
Qed.

Related

Reversing a vector in Coq

I am trying to reverse a vector in Coq. My implementation is as follows:
Fixpoint vappend {T : Type} {n m} (v1 : vect T n) (v2 : vect T m)
: vect T (plus n m) :=
match v1 in vect _ n return vect T (plus n m) with
| vnil => v2
| x ::: v1' => x ::: (vappend v1' v2)
end.
Theorem plus_n_S : forall n m, plus n (S m) = S (plus n m).
Proof.
intros. induction n; auto.
- simpl. rewrite <- IHn. auto.
Qed.
Theorem plus_n_O : forall n, plus n O = n.
Proof.
induction n.
- reflexivity.
- simpl. rewrite IHn. reflexivity.
Qed.
Definition vreverse {T : Type} {n} (v : vect T n) : vect T n.
induction v.
- apply [[]].
- rewrite <- plus_n_O. simpl. rewrite <- plus_n_S.
apply (vappend IHv (t ::: [[]])).
Show Proof.
Defined.
The problem is, when I try to compute the function, it produces something like:
match plus_n_O (S (S O)) in (_ = y) return (vect nat y) with
...
and couldn't get further. What's the problem here? How can I fix this?
The problem is that your functions use opaque proofs, plus_n_S and plus_n_O. To compute vreverse, you need to compute these proofs, and if they are opaque, the computation will be blocked.
You can fix this issue by defining the functions transparently. Personally, I prefer not to use proof mode when doing this, since it is easier to see what is going on. (I have used the standard library definition of vectors here.)
Require Import Coq.Vectors.Vector.
Import VectorNotations.
Fixpoint vappend {T : Type} {n m} (v1 : t T n) (v2 : t T m)
: t T (plus n m) :=
match v1 in t _ n return t T (plus n m) with
| [] => v2
| x :: v1' => x :: vappend v1' v2
end.
Fixpoint plus_n_S n m : n + S m = S (n + m) :=
match n with
| 0 => eq_refl
| S n => f_equal S (plus_n_S n m)
end.
Fixpoint plus_n_O n : n + 0 = n :=
match n with
| 0 => eq_refl
| S n => f_equal S (plus_n_O n)
end.
Fixpoint vreverse {T : Type} {n} (v : t T n) : t T n :=
match v in t _ n return t T n with
| [] => []
| x :: v =>
eq_rect _ (t T)
(eq_rect _ (t T) (vappend (vreverse v) [x]) _ (plus_n_S _ 0))
_ (f_equal S ( plus_n_O _))
end.
Compute vreverse (1 :: 2 :: 3 :: []).

Using well founded induction to define factorial

I have spent a lot of time on the notion of well founded induction and thought it was time to apply it to a simple case. So I wanted to use it do define the factorial function and came up with:
Definition fac : nat -> nat := Fix LtWellFounded (fun _ => nat) (* 'LtWellFounded' is some proof *)
(fun (n:nat) =>
match n as n' return (forall (m:nat), m < n' -> nat) -> nat with
| 0 => fun _ => 1
| S m => fun (g : forall (k:nat), k < S m -> nat) => S m * g m (le_n (S m))
end).
but then of course immediately arises the question of correctness. And when attempting to
prove that my function coincided everywhere with a usual implementation of fac, I realized things were far from trivial. In fact simply showing that fac 0 = 1:
Lemma fac0 : fac 0 = 1.
Proof.
unfold fac, Fix, Fix_F.
Show.
appears to be difficult. I am left with a goal:
1 subgoal
============================
(fix Fix_F (x : nat) (a : Acc lt x) {struct a} : nat :=
match x as n' return ((forall m : nat, m < n' -> nat) -> nat) with
| 0 => fun _ : forall m : nat, m < 0 -> nat => 1
| S m =>
fun g : forall k : nat, k < S m -> nat => S m * g m (le_n (S m))
end (fun (y : nat) (h : y < x) => Fix_F y (Acc_inv a h))) 0
(LtWellFounded' 0) = 1
and I cannot see how to reduce it further. Can anyone suggest a way foward ?
An application of a fixpoint only reduces when the argument it's recursing on has a constructor at its head. destruct (LtWellFounded' 0) to reveal the constructor, and then this will reduce to 1 = 1. Or, better, make sure LtWellFounded' is transparent (its proof should end with Defined., not Qed.), and then this entire proof is just reflexivity..
Some of the types that you give can actually be inferred by Coq, so you can also write
your fib in a slightly more readable form. Use dec to not forget which if branch your are in, and make the recursive function take a recursor fac as argument. It can be called with smaller arguments. By using refine, you can put in holes (a bit like in Agda), and get a proof obligation later.
Require Import Wf_nat PeanoNat Psatz. (* for lt_wf, =? and lia *)
Definition dec b: {b=true}+{b=false}.
now destruct b; auto.
Defined.
Definition fac : nat -> nat.
refine (Fix lt_wf _
(fun n fac =>
if dec (n =? 0)
then 1
else n * (fac (n - 1) _))).
clear fac. (* otherwise proving fac_S becomes impossible *)
destruct n; [ inversion e | lia].
Defined.
Lemma fac_S n: fac (S n) = (S n) * fac n.
unfold fac at 1; rewrite Fix_eq; fold fac.
now replace (S n - 1) with n by lia.
now intros x f g H; case dec; intros; rewrite ?H.
Defined.
Compute fac 8.
gives
Compute fac 8.
= 40320
: nat

"Abstracting over the terms … is ill-defined" when destructuring

I have been frequently running into an error in Coq when attempting to destruct a term of a dependent type. I am aware that there are two questions on Stack Overflow related to this issue, but neither of them are general enough for me to grasp in the context of my own proofs.
Here is a simple example of where the error occurs.
We define a type family t:
Inductive t: nat -> Set :=
| t_S: forall (n: nat), t (S n).
We will now try to prove that every member t (S n) of this type family is inhabited by a single term, namely t_S n.
Goal forall (n: nat) (p: t (S n)), p = t_S n.
We start with:
intros n p.
The next step to me would be to destruct p:
destruct p.
…but this runs into the following error:
Abstracting over the terms "n0" and "p" leads to a term fun (n1 : nat) (p0 : t n1) => p0 = t_S n
which is ill-typed.
Reason is: Illegal application:
The term "#eq" of type "forall A : Type, A -> A -> Prop"
cannot be applied to the terms
"t n1" : "Set"
"p0" : "t n1"
"t_S n" : "t (S n)"
The 3rd term has type "t (S n)" which should be coercible to "t n1".
It seems to me that it is trying to convert p into t_S n1, but somehow fails to reconcile the fact that n1 must be equal to n, thus causing opposite sides of = to have mismatching types.
Why does this occur and how does one get around this?
A simple proof of that fact is
Goal forall (n: nat) (p: t (S n)), p = t_S n.
Proof.
intros n p.
refine (
match p with
| t_S n => _
end
).
reflexivity.
Qed.
To understand how this works, it'll help to see the proof term that Coq constructs here.
Goal forall (n: nat) (p: t (S n)), p = t_S n.
Proof.
intros n p.
refine (
match p with
| t_S n => _
end
).
reflexivity.
Show Proof.
(fun (n : nat) (p : t (S n)) =>
match
p as p0 in (t n0)
return
(match n0 as x return (t x -> Type) with
| 0 => fun _ : t 0 => IDProp
| S n1 => fun p1 : t (S n1) => p1 = t_S n1
end p0)
with
| t_S n0 => eq_refl
end)
So the proof term isn't a simple match on p. Instead, Coq cleverly generalizes the S n in p: t (S n) while changing the type of the goal to that it still matches in the S n case.
Specifically, the proof term above uses the type
match (S n) as n' return (t n' -> Type) with
| 0 => fun p => IDProp (* Basically the same as `unit`; a singleton type *)
| S n' => fun p => p = t_S n'
end p
So obviously this is the same as p = t_S n, but it allows S n to be generalized. Every instance of n is now of the form S n, so it can be universally replaced with some n'. Here's how it would be written in individual tactics.
Goal forall (n: nat) (p: t (S n)), p = t_S n.
Proof.
intro n.
change (
forall p: t (S n),
match (S n) as n' return (t n' -> Type) with
| 0 => fun p => Empty_set (* This can actually be any type. We may as well use the simplest possible type. *)
| S n' => fun p => p = t_S n'
end p
).
generalize (S n); clear n.
intros n p.
(* p: t n, not t (S n), so we can destruct it *)
destruct p.
reflexivity.
Qed.
So why is all this necessary? Induction (and as a special case, case matching) requires that any indices in the inductive type be general. This can be seen by looking at the induction principle for t: t_rect: forall (P: forall n: nat, t n -> Type), (forall n: nat, P (S n) (t_S n)) -> forall (n: nat) (x: t n), P n x.
When using induction, we need P to be defined for all natural numbers. Even though the other hypothesis for the induction, forall n: nat, P (S n) (t_S n), only uses P (S n), it still needs to have a value at zero. For the goal you had, P (S n) p := (p = t_S n), but P wasn't defined for 0. What the clever trick of changing the goal does is extend P to 0 in a way that agrees with the definition at S n.

How to unfold a Coq fixpoint by one iteration

I have the following in my proof environment:
1 subgoal
a, b : nat
H : (fix loop (m : nat) : nat :=
match (m - a) with
| 0 => m
| S m' => loop m'
end) b = 0
G : (b - a) = 0
Clearly, H is equivalent to
match (b - a) with
| 0 => b
| S m' => loop m'
end = 0
Which would then allow me to rewrite using G.
But since it is trapped in there, represented as (m - a), I cannot rewrite using G.
How do I unfold a fixpoint out by one iteration?
Edit: The following code will set up the proof environment. Just ignore the admit statements. Your goal is not to prove the statement (which is trivial) but to "unfold" the fixpoint.
From mathcomp Require Import all.
Goal forall a b : nat,
modn b a = 0 -> True.
Proof.
intros a b H.
unfold modn in H.
destruct a.
+ admit.
+ simpl in H.
assert ((b - a) = 0) as G.
- admit.
- unfold modn_rec in H.
To unfold a fixpoint you need to destruct its decreasing argument.
destruct b; simpl in H.
If you want to keep a single case, you'll have to prove the equality you mention in a separate lemma or assertion.
assert (Hfix : (fix loop m := match ... end) b = match ... end)

coq induction with passing in equality

I have a list with a known value and want to induct on it, keeping track of what the original list was, and referring to it by element. That is, I need to refer to it by l[i] with varying i instead of just having (a :: l).
I tried to make an induction principle to allow me to do that. Here is a program with all of the unnecessary Theorems replaced with Admitted, using a simplified example. The objective is to prove allLE_countDown using countDown_nth, and have list_nth_rect in a convenient form. (The theorem is easy to prove directly without any of those.)
Require Import Arith.
Require Import List.
Definition countDown1 := fix f a i := match i with
| 0 => nil
| S i0 => (a + i0) :: f a i0
end.
(* countDown from a number to another, excluding greatest. *)
Definition countDown a b := countDown1 b (a - b).
Theorem countDown_nth a b i d (boundi : i < length (countDown a b))
: nth i (countDown a b) d = a - i - 1.
Admitted.
Definition allLE := fix f l m := match l with
| nil => true
| a :: l0 => if Nat.leb a m then f l0 m else false
end.
Definition drop {A} := fix f (l : list A) n := match n with
| 0 => l
| S a => match l with
| nil => nil
| _ :: l2 => f l2 a
end
end.
Theorem list_nth_rect_aux {A : Type} (P : list A -> list A -> nat -> Type)
(Pnil : forall l, P l nil (length l))
(Pcons : forall i s l d (boundi : i < length l), P l s (S i) -> P l ((nth i l d) :: s) i)
l s i (size : length l = i + length s) (sub : s = drop l i) : P l s i.
Admitted.
Theorem list_nth_rect {A : Type} (P : list A -> list A -> nat -> Type)
(Pnil : forall l, P l nil (length l))
(Pcons : forall i s l d (boundi : i < length l), P l s (S i) -> P l ((nth i l d) :: s) i)
l s (leqs : l = s): P l s 0.
Admitted.
Theorem allLE_countDown a b : allLE (countDown a b) a = true.
remember (countDown a b) as l.
refine (list_nth_rect (fun l s _ => l = countDown a b -> allLE s a = true) _ _ l l eq_refl Heql);
intros; subst; [ apply eq_refl | ].
rewrite countDown_nth; [ | apply boundi ].
pose proof (Nat.le_sub_l a (i + 1)).
rewrite Nat.sub_add_distr in H0.
apply leb_correct in H0.
simpl; rewrite H0; clear H0.
apply (H eq_refl).
Qed.
So, I have list_nth_rect and was able to use it with refine to prove the theorem by referring to the nth element, as desired. However, I had to construct the Proposition P myself. Normally, you'd like to use induction.
This requires distinguishing which elements are the original list l vs. the sublist s that is inducted on. So, I can use remember.
Theorem allLE_countDown a b : allLE (countDown a b) a = true.
remember (countDown a b) as s.
remember s as l.
rewrite Heql.
This puts me at
a, b : nat
s, l : list nat
Heql : l = s
Heqs : l = countDown a b
============================
allLE s a = true
However, I can't seem to pass the equality as I just did above. When I try
induction l, s, Heql using list_nth_rect.
I get the error
Error: Abstracting over the terms "l", "s" and "0" leads to a term
fun (l0 : list ?X133#{__:=a; __:=b; __:=s; __:=l; __:=Heql; __:=Heqs})
(s0 : list ?X133#{__:=a; __:=b; __:=s; __:=l0; __:=Heql; __:=Heqs})
(_ : nat) =>
(fun (l1 l2 : list nat) (_ : l1 = l2) =>
l1 = countDown a b -> allLE l2 a = true) l0 s0 Heql
which is ill-typed.
Reason is: Illegal application:
The term
"fun (l l0 : list nat) (_ : l = l0) =>
l = countDown a b -> allLE l0 a = true" of type
"forall l l0 : list nat, l = l0 -> Prop"
cannot be applied to the terms
"l0" : "list nat"
"s0" : "list nat"
"Heql" : "l = s"
The 3rd term has type "l = s" which should be coercible to
"l0 = s0".
So, how can I change the induction principle
such that it works with the induction tactic?
It looks like it's getting confused between
the outer variables and the ones inside the
function. But, I don't have a way to talk
about the inner variables that aren't in scope.
It's very strange, since invoking it with
refine works without issues.
I know for match, there's as clauses, but
I can't figure out how to apply that here.
Or, is there a way to make list_nth_rect use
P l l 0 and still indicate which variables correspond to l and s?
First, you can prove this result much more easily by reusing more basic ones. Here's a version based on definitions of the ssreflect library:
From mathcomp
Require Import ssreflect ssrfun ssrbool ssrnat eqtype seq.
Definition countDown n m := rev (iota m (n - m)).
Lemma allLE_countDown n m : all (fun k => k <= n) (countDown n m).
Proof.
rewrite /countDown all_rev; apply/allP=> k; rewrite mem_iota.
have [mn|/ltnW] := leqP m n.
by rewrite subnKC //; case/andP => _; apply/leqW.
by rewrite -subn_eq0 => /eqP ->; rewrite addn0 ltnNge andbN.
Qed.
Here, iota n m is the list of m elements that counts starting from n, and all is a generic version of your allLE. Similar functions and results exist in the standard library.
Back to your original question, it is true that sometimes we need to induct on a list while remembering the entire list we started with. I don't know if there is a way to get what you want with the standard induction tactic; I didn't even know that it had a multi-argument variant. When I want to prove P l using this strategy, I usually proceed as follows:
Find a predicate Q : nat -> Prop such that Q (length l) implies P l. Typically, Q n will have the form n <= length l -> R (take n l) (drop n l), where R : list A -> list A -> Prop.
Prove Q n for all n by induction.
I do not know if this answers your question, but induction seems to accept with clauses. Thus, you can write the following.
Theorem allLE_countDown a b : allLE (countDown a b) a = true.
remember (countDown a b) as s.
remember s as l.
rewrite Heql.
induction l, s, Heql using list_nth_rect
with (P:=fun l s _ => l = countDown a b -> allLE s a = true).
But the benefit is quite limited w.r.t. the refine version, since you need to specify manually the predicate.
Now, here is how I would have proved such a result using objects from the standard library.
Require Import List. Import ListNotations.
Require Import Omega.
Definition countDown1 := fix f a i := match i with
| 0 => nil
| S i0 => (a + i0) :: f a i0
end.
(* countDown from a number to another, excluding greatest. *)
Definition countDown a b := countDown1 b (a - b).
Theorem countDown1_nth a i k d (boundi : k < i) :
nth k (countDown1 a i) d = a + i -k - 1.
Proof.
revert k boundi.
induction i; intros.
- inversion boundi.
- simpl. destruct k.
+ omega.
+ rewrite IHi; omega.
Qed.
Lemma countDown1_length a i : length (countDown1 a i) = i.
Proof.
induction i.
- reflexivity.
- simpl. rewrite IHi. reflexivity.
Qed.
Theorem countDown_nth a b i d (boundi : i < length (countDown a b))
: nth i (countDown a b) d = a - i - 1.
Proof.
unfold countDown in *.
rewrite countDown1_length in boundi.
rewrite countDown1_nth.
replace (b+(a-b)) with a by omega. reflexivity. assumption.
Qed.
Theorem allLE_countDown a b : Forall (ge a) (countDown a b).
Proof.
apply Forall_forall. intros.
apply In_nth with (d:=0) in H.
destruct H as (n & H & H0).
rewrite countDown_nth in H0 by assumption. omega.
Qed.
EDIT:
You can state an helper lemma to make an even more concise proof.
Lemma Forall_nth : forall {A} (P:A->Prop) l,
(forall d i, i < length l -> P (nth i l d)) ->
Forall P l.
Proof.
intros. apply Forall_forall.
intros. apply In_nth with (d:=x) in H0.
destruct H0 as (n & H0 & H1).
rewrite <- H1. apply H. assumption.
Qed.
Theorem allLE_countDown a b : Forall (ge a) (countDown a b).
Proof.
apply Forall_nth.
intros. rewrite countDown_nth. omega. assumption.
Qed.
The issue is that, for better or for worse, induction seems to assume that its arguments are independent. The solution, then, is to let induction automatically infer l and s from Heql:
Theorem list_nth_rect {A : Type} {l s : list A} (P : list A -> list A -> nat -> Type)
(Pnil : P l nil (length l))
(Pcons : forall i s d (boundi : i < length l), P l s (S i) -> P l ((nth i l d) :: s) i)
(leqs : l = s): P l s 0.
Admitted.
Theorem allLE_countDown a b : allLE (countDown a b) a = true.
remember (countDown a b) as s.
remember s as l.
rewrite Heql.
induction Heql using list_nth_rect;
intros; subst; [ apply eq_refl | ].
rewrite countDown_nth; [ | apply boundi ].
pose proof (Nat.le_sub_l a (i + 1)).
rewrite Nat.sub_add_distr in H.
apply leb_correct in H.
simpl; rewrite H; clear H.
assumption.
Qed.
I had to change around the type of list_nth_rect a bit; I hope I haven't made it false.