Im using Spark 1.3.1 (on ubuntu 14.04) stand alone, sbt 0.13.10, and trying to execute the following script:
package co.some.sheker
import java.sql.Date
import org.apache.spark.{SparkContext, SparkConf}
import SparkContext._
import org.apache.spark.sql.{Row, SQLContext}
import com.datastax.spark.connector._
import java.sql._
import org.apache.spark.sql._
import org.apache.spark.sql.cassandra.CassandraSQLContext
import java.io.PushbackReader
import java.lang.{ StringBuilder => JavaStringBuilder }
import java.io.StringReader
import com.datastax.spark.connector.cql.CassandraConnector
import org.joda.time.{DateTimeConstants}
case class TableKey(key1: String, key2: String)
object myclass{
def main(args: scala.Array[String]) {
val conf = ...
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val csc = new CassandraSQLContext(sc)
val data_x = csc.sql("select distinct key1, key2 from keyspace.table where key1 = 'sheker'").map(row => (row(0).toString, row(1).toString))
println("Done cross mapping")
val snapshotsFiltered = data_x.map(x => TableKey(x._1,x._2)).joinWithCassandraTable("keyspace", "table")
println("Done join")
val jsons = snapshotsFiltered.map(_._2.getString("json"))
...
sc.stop()
println("Done.")
}
}
By using:
/home/user/spark-1.3.1/bin/spark-submit --master spark://1.1.1.1:7077 --driver-class-path /home/user/spark-cassandra-connector-java-assembly-1.3.1-FAT.jar --properties-file prop.conf --class "myclass" "myjar.jar"
The prop.conf file is:
spark.cassandra.connection.host myhost
spark.serializer org.apache.spark.serializer.KryoSerializer
spark.eventLog.enabled true
spark.eventLog.dir /var/tmp/eventLog
spark.executor.extraClassPath /home/ubuntu/spark-cassandra-connector-java-assembly-1.3.1-FAT.jar
And I get this exception:
Done cross mapping
Exception in thread "main" java.lang.NoSuchMethodError: com.datastax.spark.connector.mapper.ColumnMapper$.defaultColumnMapper(Lscala/reflect/ClassTag;Lscala/reflect/api/TypeTags$TypeTag;)Lcom/datastax/spark/connector/mapper/ColumnMapper;
at co.crowdx.aggregation.CassandraToElasticTransformater$.main(CassandraToElasticTransformater.scala:79)
at co.crowdx.aggregation.CassandraToElasticTransformater.main(CassandraToElasticTransformater.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Done Sending Signal aggregation job to Spark
And The strange part is when I trying to run the commands from the script- in the shell its working fine. Im using:
/home/user/spark-1.3.1/bin/spark-shell --master spark://1.1.1.1:7077 --driver-class-path /home/ubuntu/spark-cassandra-connector-java-assembly-1.3.1-FAT.jar --properties-file prop.conf
The Build.scala file is:
import sbt._
import Keys._
import sbtassembly.Plugin._
import AssemblyKeys._
object AggregationsBuild extends Build {
lazy val buildSettings = Defaults.defaultSettings ++ Seq(
version := "1.0.0",
organization := "co.sheker",
scalaVersion := "2.10.4"
)
lazy val app = Project(
"geo-aggregations",
file("."),
settings = buildSettings ++ assemblySettings ++ Seq(
parallelExecution in Test := false,
libraryDependencies ++= Seq(
"com.datastax.spark" %% "spark-cassandra-connector" % "1.2.1",
// spark will already be on classpath when using spark-submit.
// marked as provided, so that it isn't included in assembly.
"org.apache.spark" %% "spark-core" % "1.2.1" % "provided",
"org.apache.spark" %% "spark-catalyst" % "1.2.1" % "provided",
"org.apache.spark" %% "spark-sql" % "1.2.1" % "provided",
"org.scalatest" %% "scalatest" % "2.1.5" % "test",
"org.postgresql" % "postgresql" % "9.4-1201-jdbc41",
"com.github.nscala-time" %% "nscala-time" % "2.4.0",
"org.elasticsearch" % "elasticsearch-hadoop" % "2.2.0" % "provided"
),
resolvers += "conjars.org" at "http://conjars.org/repo",
resolvers += "clojars" at "https://clojars.org/repo"
)
)
}
What is wrong? Why it fails on the submit but not in the shell?
You said that you are using spark 1.3 but your build contains spark 1.2.1 dependencies.
Like I said in the comment, I believe that your spark driver's version is different from the one in your application which leads to the error that you are getting.
Related
When I try sbt package in my below code I get these following errors
object apache is not a member of package org
not found: value SparkSession
MY Spark Version: 2.4.4
My Scala Version: 2.11.12
My build.sbt
name := "simpleApp"
version := "1.0"
scalaVersion := "2.11.12"
//libraryDependencies += "org.apache.spark" %% "spark-core" % "2.4.4"
libraryDependencies ++= {
val sparkVersion = "2.4.4"
Seq( "org.apache.spark" %% "spark-core" % sparkVersion)
}
my Scala project
import org.apache.spark.sql.SparkSession
object demoapp {
def main(args: Array[String]) {
val logfile = "C:/SUPPLENTA_INFORMATICS/demo/hello.txt"
val spark = SparkSession.builder.appName("Simple App in Scala").getOrCreate()
val logData = spark.read.textFile(logfile).cache()
val numAs = logData.filter(line => line.contains("Washington")).count()
println(s"Lines are: $numAs")
spark.stop()
}
}
If you want to use Spark SQL, you also have to add the spark-sql module to the dependencies:
// https://mvnrepository.com/artifact/org.apache.spark/spark-sql
libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.4.4"
Also, note that you have to reload your project in SBT after changing the build definition and import the changes in intelliJ.
I am trying to learn a Scala-Spark JDBC program on IntelliJ IDEA. In order to do that, I have created a Scala SBT Project and the project structure looks like:
Before writing the JDBC connection parameters in the class, I first tried loading a properties file which contain all my connection properties and trying to display if they are loading properly as below:
connection.properties content:
devUserName=username
devPassword=password
gpDriverClass=org.postgresql.Driver
gpDevUrl=jdbc:url
Code:
package com.yearpartition.obj
import java.io.FileInputStream
import java.util.Properties
import org.apache.spark.sql.SparkSession
import org.apache.log4j.{Level, LogManager, Logger}
import org.apache.spark.SparkConf
object PartitionRetrieval {
var conf = new SparkConf().setAppName("Spark-JDBC")
val properties = new Properties()
properties.load(new FileInputStream("connection.properties"))
val connectionUrl = properties.getProperty("gpDevUrl")
val devUserName=properties.getProperty("devUserName")
val devPassword=properties.getProperty("devPassword")
val gpDriverClass=properties.getProperty("gpDriverClass")
println("connectionUrl: " + connectionUrl)
Class.forName(gpDriverClass).newInstance()
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().enableHiveSupport().config(conf).master("local[2]").getOrCreate()
println("connectionUrl: " + connectionUrl)
}
}
Content of build.sbt:
name := "YearPartition"
version := "0.1"
scalaVersion := "2.11.8"
libraryDependencies ++= {
val sparkCoreVer = "2.2.0"
val sparkSqlVer = "2.2.0"
Seq(
"org.apache.spark" %% "spark-core" % sparkCoreVer % "provided" withSources(),
"org.apache.spark" %% "spark-sql" % sparkSqlVer % "provided" withSources(),
"org.json4s" %% "json4s-jackson" % "3.2.11" % "provided",
"org.apache.httpcomponents" % "httpclient" % "4.5.3"
)
}
Since I am not writing or saving data into any file and trying to display the values of properties file, I executed the code using following:
SPARK_MAJOR_VERSION=2 spark-submit --class com.yearpartition.obj.PartitionRetrieval yearpartition_2.11-0.1.jar
But I am getting file not found exception as below:
Caused by: java.io.FileNotFoundException: connection.properties (No such file or directory)
I tried to fix it in vain. Could anyone let me know what is the mistake I am doing here and how can I correct it ?
You must write to full path of your connection.properties file (file:///full_path/connection.properties) and in this option when you submit a job in cluster if you want to read file the local disk you must save connection.properties file on the all server in the cluster to same path. But in other option, you can read the files from HDFS. Here is a little example for reading files on HDFS:
#throws[IOException]
def readFileFromHdfs(file: String): org.apache.hadoop.fs.FSDataInputStream = {
val conf = new org.apache.hadoop.conf.Configuration
conf.set("fs.default.name", "HDFS_HOST")
val fileSystem = org.apache.hadoop.fs.FileSystem.get(conf)
val path = new org.apache.hadoop.fs.Path(file)
if (!fileSystem.exists(path)) {
println("File (" + path + ") does not exists.")
null
} else {
val in = fileSystem.open(path)
in
}
}
I am trying to run Spark Scala project in IntelliJ Idea on Windows 10 machine.
My build.sbt:
name := "SbtIntellSpark1"
version := "0.1"
scalaVersion := "2.11.8"
libraryDependencies += "org.apache.spark" %% "spark-core" % "2.2.0"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "2.2.0"
project/build.properties:
sbt.version = 1.0.3
Main.scala:
package example
import org.apache.spark.sql.SparkSession
import org.apache.log4j.{Level, Logger}
object Main {
def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.ERROR)
val session = SparkSession
.builder()
.appName("StackOverflowSurvey")
.master("local[1]")
.getOrCreate()
val df = session.read
val responses = df
.option("header", true)
.option("inferSchema", true)
.csv("2016-stack-overflow-survey-responses.csv")
responses.printSchema()
}
}
The code runs perfectly (the schema is properly printed) when I run the Main object as shown in the following image:
My Run Configuration is as follows:
The problem is when I run "Run the program", it shows a huge stack of error which is too large to show here. Please see this gist.
How can I solve this issue?
I was building this small demo code for Spark streaming using twitter. I have added the required dependencies as shown by http://bahir.apache.org/docs/spark/2.0.0/spark-streaming-twitter/ and I am using sbt to build jars. The project build successfully and only problem seems to be is- it is not able to find the TwitterUtils class.
The scala code is given below
build.sbt
name := "twitterexample"
version := "1.0"
scalaVersion := "2.11.8"
val sparkVersion = "1.6.1"
libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % sparkVersion,
"org.apache.spark" %% "spark-streaming" % sparkVersion,
"org.apache.bahir" %% "spark-streaming-twitter" % "2.1.0",
"org.twitter4j" % "twitter4j-core" % "4.0.4",
"org.twitter4j" % "twitter4j-stream" % "4.0.4"
)
The main scala file is
TwitterCount.scala
import org.apache.spark.streaming._
import org.apache.spark.streaming.twitter._
import twitter4j.Status
object TwitterCount {
def main(args: Array[String]): Unit = {
val consumerKey = "abc"
val consumerSecret ="abc"
val accessToken = "abc"
val accessTokenSecret = "abc"
val lang ="english"
System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
System.setProperty("twitter4j.oauth.consumerSecret",consumerSecret)
System.setProperty("twitter4j.oauth.accessToken",accessToken)
System.setProperty("twitter4j.oauth.accessTokenSecret",accessTokenSecret)
val conf = new SparkConf().setAppName("TwitterHashTags")
val ssc = new StreamingContext(conf, Seconds(5))
val tweets = TwitterUtils.createStream(ssc,None)
val tweetsFilteredByLang = tweets.filter{tweet => tweet.getLang() == lang}
val statuses = tweetsFilteredByLang.map{ tweet => tweet.getText()}
val words = statuses.map{status => status.split("""\s+""")}
val hashTags = words.filter{ word => word.startsWith("#StarWarsDay")}
val hashcounts = hashTags.count()
hashcounts.print()
ssc.start
ssc.awaitTermination()
}
Then I am building the project using
sbt package
and I submitting the generated jars using
spark-submit --class "TwitterCount" --master local[*] target/scala-2.11/twitterexample_2.11-1.0.jar
Please help me with this.
Thanks
--class: The entry point for your application (e.g. org.apache.spark.examples.SparkPi)
You are missing package name in your code. Your spark submit command should be like this.
--class com.spark.examples.TwitterCount
I found the solution at last.
java.lang.NoClassDefFoundError: org/apache/spark/streaming/twitter/TwitterUtils$ while running TwitterPopularTags
I have to build the jars using
sbt assembly
but I'm still wondering what's the difference in jars that I make using
sbt package
anyone knows? plz share
I'm trying to setup zeromq data stream to spark. Basically I took the ZeroMQWordCount.scala app an tried to recompile it and run it.
I have zeromq 2.1 installed, and spark 1.2.1
here is my scala code:
package org.apache.spark.examples.streaming
import akka.actor.ActorSystem
import akka.actor.actorRef2Scala
import akka.zeromq._
import akka.zeromq.Subscribe
import akka.util.ByteString
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.zeromq._
import scala.language.implicitConversions
import org.apache.spark.SparkConf
object ZmqBenchmark {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: ZmqBenchmark <zeroMQurl> <topic>")
System.exit(1)
}
//StreamingExamples.setStreamingLogLevels()
val Seq(url, topic) = args.toSeq
val sparkConf = new SparkConf().setAppName("ZmqBenchmark")
// Create the context and set the batch size
val ssc = new StreamingContext(sparkConf, Seconds(2))
def bytesToStringIterator(x: Seq[ByteString]) = (x.map(_.utf8String)).iterator
// For this stream, a zeroMQ publisher should be running.
val lines = ZeroMQUtils.createStream(ssc, url, Subscribe(topic), bytesToStringIterator _)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
and this is my .sbt file for dependencies:
name := "ZmqBenchmark"
version := "1.0"
scalaVersion := "2.10.4"
resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"
resolvers += "Sonatype (releases)" at "https://oss.sonatype.org/content/repositories/releases/"
libraryDependencies += "org.apache.spark" % "spark-core_2.10" % "1.2.1"
libraryDependencies += "org.apache.spark" %% "spark-streaming" % "1.2.1"
libraryDependencies += "org.apache.spark" % "spark-streaming-zeromq_2.10" % "1.2.1"
libraryDependencies += "com.typesafe.akka" %% "akka-actor" % "2.2.0"
libraryDependencies += "org.zeromq" %% "zeromq-scala-binding" % "0.0.6"
libraryDependencies += "com.typesafe.akka" % "akka-zeromq_2.10.0-RC5" % "2.1.0-RC6"
libraryDependencies += "org.apache.spark" % "spark-examples_2.10" % "1.1.1"
libraryDependencies += "org.spark-project.zeromq" % "zeromq-scala-binding_2.11" % "0.0.7-spark"
The application compiles without any errors using sbt package, however when i run the application with spark submit, i get an error:
zaid#zaid-VirtualBox:~/spark-1.2.1$ ./bin/spark-submit --master local[*] ./zeromqsub/example/target/scala-2.10/zmqbenchmark_2.10-1.0.jar tcp://127.0.0.1:5553 hello
15/03/06 10:21:11 WARN Utils: Your hostname, zaid-VirtualBox resolves to a loopback address: 127.0.1.1; using 192.168.220.175 instead (on interface eth0)
15/03/06 10:21:11 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/spark/streaming/zeromq/ZeroMQUtils$
at ZmqBenchmark$.main(ZmqBenchmark.scala:78)
at ZmqBenchmark.main(ZmqBenchmark.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:358)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.ClassNotFoundException: org.apache.spark.streaming.zeromq.ZeroMQUtils$
at java.net.URLClassLoader$1.run(URLClassLoader.java:366)
at java.net.URLClassLoader$1.run(URLClassLoader.java:355)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:354)
at java.lang.ClassLoader.loadClass(ClassLoader.java:425)
at java.lang.ClassLoader.loadClass(ClassLoader.java:358)
... 9 more
Any ideas why this happens? i know the app should work because when i run the same example using the $/run-example $ script and point to the ZeroMQWordCount app from spark, it runs without the exception. My guess is the sbt file is incorrect, what else do I need to have in the sbt file?
Thanks
You are using ZeroMQUtils.createStream but the line
Caused by: java.lang.ClassNotFoundException: org.apache.spark.streaming.zeromq.ZeroMQUtils
shows that the bytecode for ZeroMQUtils was not located. When the spark examples are run, they are run against a jar file (like spark-1.2.1/examples/target/scala-2.10/spark-examples-1.2.1-hadoop1.0.4.jar) including the ZeroMQUtils class. A solution would be to use the --jars flag so spark-submit command can find the bytecode. In your case, this could be something like
spark-submit --jars /opt/spark/spark-1.2.1/examples/target/scala-2.10/spark-examples-1.2.1-hadoop1.0.4.jar--master local[*] ./zeromqsub/example/target/scala-2.10/zmqbenchmark_2.10-1.0.jar tcp://127.0.0.1:5553 hello
assuming that you have installed spark-1.2.1 in /opt/spark.