Unity : To rotate 3d Object to align 2D isometric field - unity3d

I want to rotate a car to align isometric field like above picture.
but i have any idea about that.
Do you have a some of idea to solve it?

Most quasi-isometric games use this:
x = 30, y = 45 degrees rotation
Of course, you might need to flip the values between axis or make one negative to align with your world.
Generally, I would recommend to choose either approach: Do it in 3d and position the orthographic camera so that it looks isometric/dimetric, however you want to. Or just stick with 2d isometric sprites all together. You might run into many more problems otherwise.

I used function this for rotation object in Unity 3D by AWSD key. You can refer.
void Update () {
float x = Input.GetAxis ("Horizontal") * Time.deltaTime * 150.0f;
float z = Input.GetAxis ("Vertical") * Time.deltaTime * 3.0f;
transform.Rotate (0, x, 0);
transform.Translate (0, 0, z);
}

Related

Rotating rotation value by different normalized vector directions

I have written a script in Unity which takes a SkinnedMeshRenderer and AnimationClip and rotates the vertices in each by a specified number of degrees. It looks mostly correct except that rotations seem to be incorrect. Here is an example bone rotation (in euler angles) in the skeleton along with the correct values that would be needed for the animation to look correct.
With no rotation: (0, 0, -10)
Rotated 90 degrees: (-10, 0, 0)
Rotate 180 degrees: (0, 0, 10)
I have been trying to find a way to rotate these bones to make this conversion make sense with the data I have here, but have come up short. I know I want to rotate these values around the Y axis, but don't actually want the Y value in the euler angle to change. I am aware I could just reorient the root bone around the Y axis and the problem would be solved, but I want to have no rotation in the Y axis. I am "fixing" some older animations that have unnecessary rotation values in them.
var localBoneRotation = new Quaternion(keysX[j].value, keysY[j].value, keysZ[j].value, keysW[j].value).eulerAngles;
var reorientedForward = Quaternion.AngleAxis(rotation, Vector3.up) * Vector3.forward;
localBoneRotation.x *= reorientedForward.x;
localBoneRotation.y *= reorientedForward.y;
localBoneRotation.z *= reorientedForward.z;
var finalRotation = Quaternion.Euler(localBoneRotation);
keysX[j].value = finalRotation.x;
keysY[j].value = finalRotation.y;
keysZ[j].value = finalRotation.z;
keysW[j].value = finalRotation.w;
I have also tried using a matrix and Vector3 but most of the time I end up with values in the Y. Perhaps I am going about this incorrectly. I just need to be able to specify an angle rotation and then have the input data match the final euler angles with each of these data points.

Rotate a quaternion / Change the axis it rotates around

Conceptually a quaternion can store the rotation around an axis by some degree.
Now, what is the numerically most robust and least calculation intensive way to rotate the axis?
For example when i have a quaternion, which rotates 90 degrees around the y-axis and i want those 90 degrees to be applied to some other arbitrary axis, described by a normalized vector.
EDIT: Since this also came up i added an answer on how to correctly change the axis a quaternion rotates around with another quaternion.
It is a bit unclear what your actual goal is by doing what you describe.
In order to actually keep the angle but change the axis you would use Quaternion.ToAngleAxis, alter the axis and then pass it back into Quaternion.AngleAxis
like e.g.
Quaternion someRotation;
someRotation.ToAngleAxis(out var angle, out var axis);
var newAxis = Vector3.up;
var newRotation = Quaternion.AngleAxis(angle, new axis);
Or you rotate an existing Quaternion by another one using * like
Quaternion newRotation = someRotation * Quaternion.Euler(90, 0, 0);
which would take the existing rotation and rotate it by 90° around the X axis.
#derHugo's solution, solves the problem i initially asked, but the seconds part of his answer isn't doing what he seemed to be describing. To rotate a quaternions axis of rotation with another quaternion you would need to apply the rotations differently.
E.g. you have a quaternion yQuaternion, which rotates 90° around the y-axis and want to rotate, it's rotation axis by 90° around the x-axis (which would result in a quaternion rotating 90° around the z-axis) you'd have to do the following.
// The quaternion, we want to "rotate"
var yQuaternion = Quaternion.Euler(0f, 90f, 0f);
// The quaternion we want to rotate by.
var xQuaternion = Quaternion.Euler(90f, 0f, 0f);
var result = xQuaternion * yRotation * Quaternion.Inverse(xQuaternion);
What happens here is that we first rotate backwards to our desired axis, then apply the rotation we want to use and then revert the rotation we initally applied.
NOTE: I'm quit sure, that saying "rotate a quaternion" isn't a valid term when talking about this quaternion operations.

Rotate object to target, while being rotated to match the terrain slope

In the image above
the red vector is the spider's forward vector
the blue vector is the vector representing the direction between the spider and it's target
In the code below, orientation is a vector that's representing the normal of the terrain, so that the spider gets aligned to it:
Vector3 orientation = GetTerrainNormal();
Quaternion rotationNeeded = Quaternion.FromToRotation(Vector3.up, orientation);
transform.rotation = Quaternion.RotateTowards(
transform.rotation,
rotationNeeded,
RotationSpeed * Time.deltaTime
);
My issue is that I cannot manage to make the spider face its target... When I add any code that would make it rotate towards it, then it's not aligned with the terrain's normals anymore, it says straight...
So basically, how can I make the spider rotate on the Y world axis (I think), while still then being rotated to match the slope?
Full answer
In case it helps someone else, here's the full answer:
Vector3 orientation = GetTerrainNormal();
Vector3 directionToTarget = (target.position - transform.position).Y(0);
float d = Vector3.Dot(directionToTarget, orientation);
directionToTarget -= d * orientation;
if (directionToTarget.sqrMagnitude > 0.00001f) {
directionToTarget.Normalize();
Quaternion rotationNeeded = Quaternion.LookRotation(directionToTarget, orientation);
transform.rotation = Quaternion.RotateTowards(
transform.rotation,
rotationNeeded,
xRotationSpeed * Time.deltaTime
);
}
This answer on the unity forums was extremely helpful: https://forum.unity.com/threads/look-at-object-while-aligned-to-surface.515743/
Try this
Vector3 directionToTarget = target.transform.position - transform.position;
Quaternion rotationNeeded = Quaternion.LookRotation(directionToTarget, orientation);
First of all, I'm not sure why you need a code to orient the spider manually to the terrain. You can make the spider a Rigidbody and the Unity engine will take care of it for you.
Regardless, you want to rotate the spider around the local Y-Axis (this will keep the current orientation).
You can do this using transform.LookAt() (referring to the blue vector in the picture) (documented here) and passing the up vector as the 2nd argument.

Getting compass-like behavior from quaternion

Suppose you have a camera projection matrix, i.e. camera translation vector + rotation quaternion, like every typical camera, it is able to move and rotate in any direction. And independent of it's rotation whether it is looking forward, upward or downward I need to show a compass-like gauge pointing where the camera is targeted at.
The problem is that when the camera is pointed downwards the rotation of camera around it's optical center defines the value of the compass, but when the camera points forward, the rotation of camera around it's center no longer affects the value of compass, in this case the direction of camera defines the value of compass.
It get's more ugly when the camera is tilted downwards only 45 degrees, in this case it is not even clear whether the rotation around camera center affects rotation of compass.
So is there an elegant way of getting the compass value based on arbitrary camera projection matrix / quaternion?
Thank you in advance!
If you want just an arrow pointing at the target its:
Transform camera = Camera.main.transform;
Transform target = Target.transform;
Vector3 relativePosition = target.position - camera.position;
Vector3 targetRelative = Vector3.ProjectOnPlane(relativePosition, camera.forward);
float angle = Angle360(camera.up, targetRelative, camera.forward);
Compass.transform.rotation = Quaternion.Euler(0, 0, angle);
The angle function is:
float Angle360(Vector3 from, Vector3 to, Vector3 normal)
{
float dot = Vector3.Dot(from, to);
float det = Vector3.Dot(normal, Vector3.Cross(from, to));
return Mathf.Atan2(det, dot)*Mathf.Rad2Deg;
}
Here is how you can get the direction of the compass in worldspace:
Project the camera direction and target position on the XZ plane
Transform camera = Camera.main.transform;
Transform target = Target.transform;
Vector3 cameraWorldDirXZ = Vector3.ProjectOnPlane(camera.forward, Vector3.up).normalized;
Vector3 targetWorldDirXZ = Vector3.ProjectOnPlane(target.position, Vector3.up).normalized;
The angle between the cameraWorldDirXZ and targetWorldDirXZ is the angle of your compass needle.
But i don't think this will behave like you think it will. This gives you the angle that you need to rotate the camera.forward vector around the y axis to face the target. If you rotate around camera.forward you don't change either the camera.forward vector or the y axis so the compass wont change.
You might want to try a compass in local space. For that you project onto the camera XZ plane:
Vector3 cameraLocalDirXZ = camera.forward;
Vector3 targetLocalDirXZ = Vector3.ProjectOnPlane(target.position, camera.up).normalized;
Again the angle between the cameraLocalDirXZ and targetLocalDirXZ is the angle of your compass needle. This gives you the angle you need to rotate camera.forward around camera.up to face the target. Note that when you rotate around camera.forward it will change camera.up so it will change the compass direction.
If anyone stumbles upon this problem, the solution (thanks to #Pluto) is very simple, multiply your camera quaternion over three axis vectors (0,0,1), (0,1,0), (1,0,0), you will get three vectors defining coordinate system of your camera, project those three vectors onto your plane, find centroid of your three projected points and voila you have compass direction.
Here's the piece of code for that:
var rotation = /* Your quaternion */;
var cameraOrtX = rotation * new Vector3 (1, 0, 0);
var cameraOrtY = rotation * new Vector3 (0, 1, 0);
var cameraOrtZ = rotation * new Vector3 (0, 0, 1);
var cameraOrtPX = Vector3.ProjectOnPlane(cameraOrtX, new Vector3(0, 1, 0));
var cameraOrtPY = Vector3.ProjectOnPlane(cameraOrtY, new Vector3(0, 1, 0));
var cameraOrtPZ = Vector3.ProjectOnPlane(cameraOrtZ, new Vector3(0, 1, 0));
var centroid = (cameraOrtPX + cameraOrtPY + cameraOrtPZ) / 3.0f;

Rotate an object around its center point in unity 3d

How to rotate a 3d game object around its center point in unity 3d.
Just use bounds.center from the renderer
Vector3 position = myGameObject.GetComponent<Renderer>().bounds.center;
myGameObject.transform.RotateAround(position, rotationVector, degreesPerSecond * Time.deltaTime);
where rotationVector is your rotation axis (Vector3)
The two common ways to rotate an object are
The rotate attribute in the transform. Using this one you can set the exact coordinates for the target object rotation. However, you'll have to manage the smoothness by yourself if you want to make animations and the values are given through Quaternion type. I recommend to use the static method Quaternion.Euler so you can pass values in a X, Y, Z. The example below set the object to turn 90 degrees clockwise in the Y axis:
transform.rotation = Quaternion.Euler (0, 90, 0);
The second approach uses the Rotation method in the same transform attribute. This method allow you to pass the amount of degrees in which object will rotate and already accept X, Y and Z coordinates instead Quaternion.
The example below rotate the object 1 degree clockwise in the Y axis:
transform.Rotate (0, 1, 0);
To best understand the difference between both methods, if you use the first one in an Update method you'll see the object static rotated 90 degrees in the Y axis. The second example used in an Update will make the object spin clockwise in the Y axis (too fast).
use
Transform.rotation
look here for Examples/Documentation :
Unity Script Reference