Self in protocol always need to be optional? - swift

Example:
internal protocol PropertyProtocol {
var property: Self {
get
}
}
The only option I see to implement it, let us say in a class is
internal final class PropertyClass: PropertyProtocol {
let property: PropertyClass
internal init(otherOne pOtherOne: PropertyClass) {
self.property = pOtherOne
}
}
But then I do not see a possibility to use it.
let test: PropertyProtocol = PropertyProtocol(...) // hmm, how?
Does Self in a protocol property type declaration always have to be optional?

As a stored property, indeed it would have to be optional for you to create an instance, as each instance would require the stored property to be assigned during initialisation – leading to recursive behaviour. Therefore Self doesn't make too much sense as a stored property; it's really more designed to be used with methods or calculated properties.
Depending on what you're using this for (seems like a fairly hypothetical example), you could implement a calculated property like so:
protocol PropertyProtocol {
var property : Self { get }
}
final class PropertyClass : PropertyProtocol {
var property : PropertyClass {
get {
return // ...
}
set {
// ...
}
}
}
That way the class itself can manage the creation of the property when it's accessed, preventing the recursive behaviour of requiring it to be assigned during initialisation.

Related

How to pass a class object to a function but prevent mutation?

I can't see where in the Swift language is the facility to pass a class object to a function yet prevent that function from mutating the object by either calling functions that will implicitly mutate it or setting public variables. I'm gathering that this facility just does not exist, can anyone confirm?
That is to say, all objects are always mutable everywhere they can be seen.
This is extremely common throughout Cocoa. You create an immutable class and a mutable subclass. For examples, see AVComposition/AVMutableComposition, CBService/CBMutableService, CNContact/CNMutableContact.
In ObjC, this is common practice with collections as well (arrays, dictionaries, etc), but since those are value types in Swift, there's no need to use the classes (NSArray/NSMutableArray).
In Swift, rather than creating two classes, you create an immutable protocol and a class:
protocol Person: AnyObject {
var name: String { get }
var address: String { get }
}
class MutablePerson: Person {
var name: String = ""
var address: String = ""
}
Now, any function that accept Person will have an immutable object, and any function that accepts MutablePerson will be able to mutate it. This is a general pattern you can use to give different parts of your program access to different slices of the object's API. It's much more general and flexible than just const.
That said, this is not as common a pattern in Swift as it is in ObjC, since in most cases where this is useful, the type should be a struct anyway. But it is absolutely available if needed.
To your question about doing this with two classes, as in ObjC, it's possible, as long as you define both in the same file. It's just a bit tedious:
public class Person {
public fileprivate(set) var name: String = ""
public fileprivate(set) var address: String = ""
}
public class MutablePerson: Person {
public override var name: String {
get { super.name }
set { super.name = newValue }
}
public override var address: String {
get { super.address }
set { super.address = newValue }
}
}
It's possible a property wrapper could improve this, but I haven't been able to figure out how.
There's no way I can think of to allow usage of methods, but properties are no problem**. Just use an Immutable as a function parameter.
final class Class {
var property = true
}
var object = Immutable(Class())
object.property = false // Cannot assign to property: 'object' is immutable
/// An affordance for accessing the properties of an object
/// without the ability to mutate them.
#dynamicMemberLookup
public struct Immutable<Object: AnyObject> {
private let object: Object
}
// MARK: - public
public extension Immutable {
init(_ object: Object) {
self.object = object
}
subscript<Value>(dynamicMember keyPath: KeyPath<Object, Value>) -> Value {
object[keyPath: keyPath]
}
}
** The getters could be mutating, and they could return mutating closures. 😜 But that's an issue with the protocol approach as well. The best that we can do right now is a generally accurate hack.
What you are looking for are value types (such as structs). If you mutate any properties of a value type, you mutate the instance itself.
This means that when you pass a value type to a function, the function won't be able to mutate any of the properties of said value type.
On the other hand, classes are reference types, so mutating any of their properties doesn't mutate the class instance itself. Because of this, you cannot ban functions from modifying mutable properties of the class (unless you make them setter of said properties private).

Conforming to Protocols in Swift Using Extensions

I have a Swift protocol defined as follows:
protocol SmartContract {
func apply(transaction :Transaction)
func addBrokenRule(_ brokenRule: BrokenRule)
var brokenRules :[BrokenRule] { get set }
}
I have an extension on SmartContract defined as follows:
extension SmartContract {
mutating func addBrokenRule(_ brokenRule :BrokenRule) {
if self.brokenRules == nil {
self.brokenRules = [BrokenRule]()
}
self.brokenRules.append(brokenRule)
}
}
I also have a class MoneyTransferContract which conforms to the protocol but does not define brokenRules. This is because I have defined the brokenRules inside the extension.
class MoneyTransferContract : SmartContract {
func apply(transaction :Transaction) { // do something here }
}
My question is how can I make sure that MoneyTransformContract conforms to the SmartContract protocol. Is there anyway to have BrokenRule available to MoneyTransformContract without defining it again and again in different SmartContracts.
john doe wrote:
Is there anyway to have BrokenRule available to MoneyTransformContract without defining it again and again in different SmartContracts.
What you want is a superclass/subclass relationship for that behavior.
class SmartContract {
func apply(transaction :Transaction) {
//implemention
}
var brokenRules: [BrokenRule] = []
func addBrokenRule(_ brokenRule :BrokenRule) {
brokenRules.append(brokenRule)
}
}
class MoneyTransferContract : SmartContract {
// Gets `brokenRules` for free from superclass.
}
class BitCoinTransferContract : SmartContract {
// Gets `brokenRules` for free from superclass.
}
If I'm understanding correctly, there is no way to do what you want. (EDIT: as Jeff notes, if you want to use inheritance as opposed to a protocol, this is possible. See his answer for how). Protocols in Swift are just lists of requirements that it is up to implementing types to properly define. Protocols generally don't have any say over the actual behavior or implementation of implementing types, and only guarantees that the properties and functions exist. Your SmartContract protocol says that every SmartContract must have a function apply(transaction:), a function addBrokenRule(_:), and a property brokenRules which can be accessed and modified.
When a type implements SmartContract it has to define each one of these. Just as you have to write out the signature to tell the compiler that you are implementing apply(transaction:), you also have to tell the compiler how the property brokenRules will be implemented. You could obtain this functionality in a somewhat useless way, by defining an extension which has brokenRules as a computed property which is essentially a no-op:
extension SmartContract {
var brokenRules: [BrokenRule] {
get { return [] }
set(newRules) { }
}
}
But this means that any implementing type which forgets to specify their own implementation for brokenRules will have a brokenRules property which always resolves to an empty array.
One reason for this is Swift's computed properties. For some implementing type, it might not make sense for brokenRules to be stored as an array--and a protocol can't force that. That's an implementation detail that a protocol author can't (and shouldn't) worry about. For instance, if BrokenRules were easily convertible to and from strings, you could imagine some class which implemented SmartContract like so:
class StringContract: SmartContract {
var ruleString: String
var brokenRules: [BrokenRule] {
get {
let stringArray = ruleString.split(separator: ",")
return stringArray.map { BrokenRule(string:String($0)) }
}
set(newRules) {
let stringArray = newRules.map { $0.stringValue }
ruleString = stringArray.joined(separator: ",")
}
}
func apply(transaction: Transaction) {
// do something here...
}
init() {
ruleString = ""
}
}
Note that we don't have to specify an implementation for addBrokenRule(_:). That's what your protocol extension gets you. By providing an implementation in the extension, you ensure that all implementing types have a default implementation of the function, and so they can choose to forego defining their own.

Setting a delegate generates a compile error

I want to use a strategy pattern to register a set of objects that implement a protocol. When I set this up, I get a compile error when trying to set the delegate that is part of the protocol.
For discussion purposes, I have slightly reworked the DiceGame from the Swift eBook's Delegation chapter. The changes of significance are:
protocol DiceGame - declares a delegate
class SnakesAndLadders implements DiceGame (and therefore the protocol and delegate)
class Games holds 3 instances of SnakesAndLadders as
1) a concrete class of SnakesAndLadders
2) a 'let' constant of protocol DiceGame
3) a 'var' variable of protocol DiceGame
We can set the delegate fine if we use the concrete class (snakesAndLadders). However, there is a compile error if we use 'let' to hold it as a protocol (diceGameAsLet) but it compiles if we hold the variable as a 'var' (diceGameAsVar).
It is easy to work around, however, the delegate itself never changes so should be held as a 'let' constant, as it is only the internal property that changes. I must not understand something (possibly subtle but significant) about protocols and how they work and should be used.
class Dice
{
func roll() -> Int
{
return 7 // always win :)
}
}
protocol DiceGame
{
// all DiceGames must work with a DiceGameDelegate
var delegate:DiceGameDelegate? {get set}
var dice: Dice {get}
func play()
}
protocol DiceGameDelegate
{
func gameDidStart( game:DiceGame )
func gameDidEnd( game:DiceGame )
}
class SnakesAndLadders:DiceGame
{
var delegate:DiceGameDelegate?
let dice = Dice()
func play()
{
delegate?.gameDidStart(self)
playGame()
delegate?.gameDidEnd(self)
}
private func playGame()
{
print("Playing the game here...")
}
}
class Games : DiceGameDelegate
{
let snakesAndLadders = SnakesAndLadders()
// hold the protocol, not the class
let diceGameAsLet:DiceGame = SnakesAndLadders()
var diceGameAsVar:DiceGame = SnakesAndLadders()
func setupDelegateAsClass()
{
// can assign the delegate if using the class
snakesAndLadders.delegate = self
}
func setupDelegateAsVar()
{
// if we use 'var' we can assign the delegate
diceGameAsVar.delegate = self
}
func setupDelegateAsLet()
{
// DOES NOT COMPILE - Why?
//
// We are not changing the dice game so want to use 'let', but it won't compile
// we are changing the delegate, which is declared as 'var' inside the protocol
diceGameAsLet.delegate = self
}
// MARK: - DiceGameDelegate
func gameDidStart( game:DiceGame )
{
print("Game Started")
}
func gameDidEnd( game:DiceGame )
{
print("Game Ended")
}
}
DiceGame is a heterogeneous protocol that you're using as a type; Swift will treat this type as a value type, and hence (just as for a structures), changing its mutable properties will mutate also the instance of the protocol type itself.
If you, however, add the : class keyword to the DiceGame protocol, Swift will treat it as a reference type, allowing you to mutate members of instances of it, without mutating the instance itself. Note that this will constraint the protocol as conformable to only by class types.
protocol DiceGame: class { ... }
With the addition of the above, the mutation of immutable diceGameAsLet:s properties will be allowed.
In this context, it's worth mentioning that the : class keyword is usually used to constrain protocols used as delegates (e.g., DiceGameDelegate in your example) as conformable to only by class types. With this additional constraint, the delegates can be used as types to which the delegate owner (e.g. some class) only hold a weak reference, useful in contexts where a strong reference to the delegate could create a retain cycle.
See e.g. the 2nd part of this answer for details.
The issue is that when you store something as a Protocol, even if it is a class, swift considers them to be a value type, instead of the reference type you are expecting them to be. Therefore, no part of it is allowed to be changed. Take a look at this reference for more information.

Why is it not possible to define property observers for computed propertys?

I am currently playing around with swift and there is one thing i don't understand.
Lets take a look at the following non compiling code snippet
class A {
var test : String {
get {
return "foo"
}
set {
self.test = newValue
}
willSet {
}
didSet {
}
}
}
For some reason the Compiler is complaining. So i am not able to implement all of them: get and set, didSet and willSet. I thought that observing computed properties is maybe not possible.
So i played around a little bit more and then i discovered that subclasses can override the property observers of computed propertys.
What the hack? This doesnt makes sense to me
import UIKit
class A {
var test : String {
get {
return "name"
}
set {
self.test = newValue
}
}
}
class B : A {
override var test : String {
willSet {
}
didSet {
}
}
}
Why i am not able to add property observers in the first code snippet but i am able to overwrite these observers inside a subclass?
In the first code, you don't need observers, because you already are writing the code that sets the property (set). Thus, if you want to do something before/after the property gets set, you can just do it right there in the setter handler (set):
class A {
var test : String {
get {
return "foo"
}
set {
// will set
self.test = newValue
// did set
}
}
}
Thus, by a kind of Occam's Razor principle, it would be redundant and unnecessary to have separate setter observers: you are the setter, so there is no need to observe yourself.
In your subclass override, on the other hand, where you didn't supply a whole new computed property, the setting is going on behind your back, as it were, so as compensation you are allowed to inject set observation into the process.
“You don’t need to define property observers for non-overridden computed properties, because you can observe and respond to changes to their value in the computed property’s setter.”
Excerpt From: Apple Inc. “The Swift Programming Language (Swift 2.1).” iBooks. https://itunes.apple.com/cn/book/swift-programming-language/id881256329?l=en&mt=11

Specify a settable property/variable in a protocol

I would like my protocol to declare that there is a read/write property available. I have attempted it, but this does not work:
protocol EdibleThing {
var eaten: Bool { get set }
}
class Pickle: EdibleThing { var eaten = false }
class RusticGrapefruit: EdibleThing { var eaten = false }
class Jar {
let contents: [EdibleThing] = [Pickle(), RusticGrapefruit()]
var nextItem: EdibleThing {
return contents.last ?? Pickle() // Lazy pickle generation technology
}
func eat() {
let food = nextItem
food.eaten = true // (!) ERROR: Cannot assign to result of this expression
}
}
What am I doing wrong? I think I've declared that the protocol has a get/set var called eaten, so why can't I set it?
The protocol might be implemented by either classes and structs - that prevents you from changing the internal status of an instance of a class or struct implementing that protocol using an immutable variable.
To fix the problem you have to either declare the food variable as mutable:
func eat() {
var food = nextItem
food.eaten = true // (!) ERROR: Cannot assign to result of this expression
}
or declare the EdibleThing protocol to be implementable by classes only:
protocol EdibleThing : class {
var eaten: Bool { get set }
}
Note that this happens because food is a variable of EdibleThing type - the compiler doesn't know if the actual instance is a value or reference type, so it raises an error. If you make it a variable of a class type, like this:
let food: Pickle = nextItem as! Pickle
the compiler knows without any ambiguity that it's a reference type, and in that case it allows the assignment. But I guess that breaks your app logic... so consider it just as an example
You're mutating food.
Replace let food = nextItem with var food = nextItem
The problem is that you can't mutate a property on a value type defined by let.
Even though both of RusticGrapefruit and Pickle are class implementations (reference types), the protocol could be assigned to a value type like a struct. The compiler detects a potential problem and stops us.
Two solutions:
Change let to var (in my case, this would mean changing a lot of code that refers to objects of this type. Also, I like the semantic value and possible compiler optimizations from let)
Declare the protocol as only valid for classes: protocol EdibleThing: class { }