Mongo Architecture Efficiency - mongodb

I am currently working on designing a local content bases sharing system that depends on mongoDB. I need to make a critical architecture decision that will undoubtably have a huge impact on query performance, scaling and overall long term maintainability.
Our system has a library of topics, each topic is available in specific cities/metropolitan areas. When a person creates a piece of content it needs to be stored as part of the topic in a specific city. There are three approaches I am currently considering to address these requirements (And open to other ideas as well).
Option 1 (Single Collection per Topic/City):
Example: a collection name would be TopicID123CityID456 and each entry would obviously be a document within that collection.
Option 2 (Single Topic Collection)
Example: A collection name would be Topic123 and each entry would create a document that contains an indexed cityID.
Option 3 (Single City Collection)
Example: A collection name would be City456 and each entry would create a document that contains an indexed topicID
When querying the DB I always want to build a feed in date order based on the member's selected topic(s) and city. Since members can group multiple topics together to build a custom feed, option 3 seems to be the best, however I am concerned with long term performance of this approach. It seems option 1 would be the most performant but also forces multiple queries when needing to select more than one topic.
Another thing that I need to consider is some topics will be far more active and grow much larger than other topics which will also vary by location.
Since I still consider myself a beginner with MongoDB, I want to make sure the general DB structure is the most ideal before coding all of the logic around writing and retrieving the data. And I don't know how well Mongo Performs with hundreds of thousands if not millions of documents in a collection thus my uncertainty in approach.
From experience which is the most optimal way of tackling the storage and recall of this data? Any insight would be greatly appreciated.
UPDATE: June 22, 2016
It is important to note that we are starting in a one DB server environment to start. #profesor79 provided a great scaling solution once we need to move to a multi-server (Sharded) environment.

from your 3 proposal I will pickup number 4 :-)
Having a one collection sharded over multiple servers.
As there could be one collection TopicCity, `we could have a one for all topics and one foll all cities.
Then collection topicCities will have all documents sharded.
Sharding on key {topic:1, city:1} will allow to balance load thru shard servers and enytime you will need to add more power you will be able to add shard to cluster.
Any comments welcome!

Related

Single big collection for all products vs Separate collections for each Product category

I'm new to NoSQL and I'm trying to figure out the best way to model my database. I'll be using ArangoDB in the project but I think this question also stands if using MongoDB.
The database will store 12 categories of products. Each category is expected to hold hundreds or thousands of products. Products will also be added / removed constantly.
There will be a number of common fields across all products, but each category will also have unique fields / different restrictions to data.
Keep in mind that there are instances where I'd need to query all the categories at the same time, for example to search a product across all categories, and other instances where I'll only need to query one category.
Should I create one single collection "Product" and use a field to indicate the category, or create a seperate collection for each category?
I've read many questions related to this idea (1 collection vs many) but I haven't been able to reach a conclusion, other than "it dependes".
So my question is: In this specific use case which option would be most optimal, multiple collections vs single collection + sharding, in terms of performance and speed ?
Any help would be appreciated.
As you mentioned, you need to play with your data and use-case. You will have better picture.
Some decisions required as below.
Decide the number of documents you will have in near future. If you will have 1m documents in an year, then try with at least 3m data
Decide the number of indices required.
Decide the number of writes, reads per second.
Decide the size of documents per category.
Decide the query pattern.
Some inputs based on the requirements
If you have more writes with more indices, then single monolithic collection will be slower as multiple indices needs to be updated.
As you have different set of fields per category, you could try with multiple collections.
There is $unionWith to combine data from multiple collections. But do check the performance it purely depends on the above decisions. Note this open issue also.
If you decide to go with monolithic collection, defer the sharding. Implement this once you found that queries are slower.
If you have more writes on the same document, writes will be executed sequentially. It will slow down your read also.
Think of reclaiming the disk space when more data is cleared from the collections. Multiple collections do good here.
The point which forces me to suggest monolithic collections is that I'd need to query all the categories at the same time. You may need to add more categories, but combining all of them in single response would not be better in terms of performance.
As you don't really have a join use case like in RDBMS, you can go with single monolithic collection from model point of view. I doubt you could have a join key.
If any of my points are incorrect, please let me know.
To SQL or to NoSQL?
I think that before you implement this in NoSQL, you should ask yourself why you are doing that. I quite like NoSQL but some data is definitely a better fit to that model than others.
The data you are describing is a classic case for a relational SQL DB. That's fine if it's a hobby project and you want to try NoSQL, but if this is for a production environment or client, you are likely making the situation more difficult for them.
Relational or non-relational?
You mention common fields across all products. If you wish to update these fields and have those updates reflected in all products, then you have relational data.
Background
It may be worth reading Sarah Mei 2013 article about this. Skip to the section "How MongoDB Stores Data" and read from there. Warning: the article is called "Why You Should Never Use MongoDB" and is (perhaps intentionally) somewhat biased against Mongo, so it's important to read this through the correct lens. The message you should get from this article is that MongoDB is not a good fit for every data type.
Two strategies for handling relational data in Mongo:
every time you update one of these common fields, update every product's document with the new common field data. This is generally only ok if you have few updates or few documents, but not both.
use references and do joins.
In Mongo, joins typically happen code-side (multiple db calls)
In Arango (and in other graph dbs, as well as some key-value stores), the joins happen db-side (single db call)
Decisions
These are important factors to consider when deciding which DB to use and how to model your data
I've used MongoDB, ArangoDB and Neo4j.
Mongo definitely has the best tooling and it's easy to find help, but I don't believe it's good fit in this case
Arango is quite pleasant to work with, but doesn't yet have the adoption that it deserves
I wouldn't recommend Neo4j to anyone looking for a NoSQL solution, as its nodes and relations only support flat properties (no nesting, so not real documents)
It may also be worth considering MariaDB or Postgres

Should data be clustered as databases or collections [duplicate]

I am designing a system with MongoDb (64 bit version) to handle a large amount of users (around 100,000) and each user will have large amounts of data (around 1 million records).
What is the best strategy of design?
Dump all records in single collection
Have a collection for each user
Have a database for each user.
Many Thanks,
So you're looking at somewhere in the region of 100 billion records (1 million records * 100,000 users).
The preferred way to deal with large amounts of data is to create a sharded cluster that splits the data out over several servers that are presented as single logical unit via the mongo client.
Therefore the answer to your question is put all your records in a single sharded collection.
The number of shards required and configuration of the cluster is related to the size of the data and other factors such as the quantity and distribution of reads and writes. The answers to those questions are probably very specific to your unique situation, so I won't attempt to guess them.
I'd probably start by deciding how many shards you have the time and machines available to set up and testing the system on a cluster of that many machines. Based on the performance of that, you can decide whether you need more or fewer shards in your cluster
So you are looking for 100,000,000 detail records overall for 100K users?
What many people don't seem to understand is that MongoDB is good at horizontal scaling. Horizontal scaling is normally classed as scaling huge single collections of data across many (many) servers in a huge cluster.
So already if you use a single collection for common data (i.e. one collection called user and one called detail) you are suiting MongoDBs core purpose and build.
MongoDB, as mentioned, by others is not so good at scaling vertically across many collections. It has a nssize limit to begin with and even though 12K initial collections is estimated in reality due to index size you can have as little as 5K collections in your database.
So a collection per user is not feasible at all. It would be using MongoDB against its core principles.
Having a database per user involves the same problems, maybe more, as having singular collections per user.
I have never encountered some one not being able to scale MongoDB to the billions or even close to the 100s of billions (or maybe beyond) on a optimised set-up, however, I do not see why it cannot; after all Facebook is able to make MySQL scale into the 100s of billions per user (across 32K+ shards) for them and the sharding concept is similar between the two databases.
So the theory and possibility of doing this is there. It is all about choosing the right schema and shard concept and key (and severs and network etc etc etc etc).
If you were to witness problems you could go for splitting archive collections, or deleted items away from the main collection but I think that is overkill, instead you want to make sure that MongoDB knows where each segment of your huge dataset is at any given point in time on the master and ensure that this data is always hot, that way queries that don't do a global and scatter OP should be quite fast.
About a collection on each users:
By default configuration, MongoDB is limited to 12k collections. You can increase the size of this with --nssize but it's not unlimited.
And you have to count index into this 12k. (check "namespaces" concept on mongo documentation).
About a database for each user:
For a model point of view, that's very curious.
For technical, there is no limit on mongo, but you probably have a limit with file descriptor (limit from you OS/settings).
So asĀ #Rohit says, the two last are not good.
Maybe you should explain more about your case.
Maybe you can cut users into different collections (ex: one for each first letter of name etc., or for each service of the company...).
And, of course use sharding.
Edit: maybe MongoDb is not the best database for your use case.

Distributing big data storage for non-relational data

The problem consists of a lot (apprx. 500 million per day) of non-relational messages of relatively small size (apprx. 1KB). The messages are written once and never modified again. The messages has various structures, though there are patterns that the message must fit in. This data then must be used to make a search over them. The search may be done on any fields of the message, the only always present field is the date, thus the search will be done for a specific day.
The approach I have come up so far is to use MongoDB. Each day I create a few collections (apprx. 2000) and distribute messages during the day to those collections according to the pattern. I find the patterns important because I make indexing that the number of indexes is limited to 64.
This strategy results in 500G of data + 150G of indexes = 650G per day. Of course, the question here is how to distribute those data? Obvious solution is to use Mongo Sharding and spread the collections over the shards. However, I have not find any scenario close to my problem described in mongo manuals. Moreover, I am not even sure if I can dynamically (not manually) add new collections every day to shards. Any knowledge/suggestions from expreinced users? Shoudl I change my design?

120 mongodb collections vs single collection - which one is more efficient?

I'm new to mongodb and I'm facing a dilemma regarding my DB Schema design:
Should I create one single collection or put my data into several collections (we could call these categories I suppose).
Now I know many such questions have been asked, but I believe my case is different for 2 reasons:
If I go for many collections, I'll have to create about 120 and that's it. This won't grow in the future.
I know I'll never need to query or insert into multiple collections. I will always have to query only one, since a document in collection X is not related to any document stored in the other collections. Documents may hold references to other parts of the DB though (like userId etc).
So my question is: could the 120 collections improve query performance? Is this a useful optimization in my case?
Or should I just go for single collection + sharding?
Each collection is expected hold millions of documents. If use only one, it will store billions of docs.
Thanks in advance!
------- Edit:
Thanks for the great answers.
In fact the 120 collections is only a self made limit, it's not really optimal:
The data in the collections is related to web publishers. There could be millions of these (any web site can join).
I guess the ideal situation would be if I could create a collection for each publisher (to hold their data only). But obviously, this is not possible due to mongo limitations.
So I came up with the idea of a fixed number of collections to at least distribute the data somehow. Like: collection "A_XX" would hold XX Platform related data for publishers whose names start with "A".. etc. We'll only support a few of these platforms, so 120 collections should be more than enough.
On another website someone suggested using many databases instead of many collections. But this means overhead and then I would have to use / manage many different connections.
What do you think about this? Is there a better solution?
Sorry for not being specific enough in my original question.
Thanks in advance
Single Sharded Collection
The edited version of the question makes the actual requirement clearer: you have a collection that can potentially grow very large and you want an approach to partition the data. The artificial collection limit is your own planned partitioning scheme.
In that case, I think you would be best off using a single collection and taking advantage of MongoDB's auto-sharding feature to distribute the data and workload to multiple servers as required. Multiple collections is still a valid approach, but unnecessarily complicates your application code & deployment versus leveraging core MongoDB features. Assuming you choose a good shard key, your data will be automatically balanced across your shards.
You can do not have to shard immediately; you can defer the decision until you see your workload actually requiring more write scale (but knowing the option is there when you need it). You have other options before deciding to shard as well, such as upgrading your servers (disks and memory in particular) to better support your workload. Conversely, you don't want to wait until your system is crushed by workload before sharding so you definitely need to monitor the growth. I would suggest using the free MongoDB Monitoring Service (MMS) provided by 10gen.
On another website someone suggested using many databases instead of many collections. But this means overhead and then I would have to use / manage many different connections.
Multiple databases will add significantly more administrative overhead, and would likely be overkill and possibly detrimental for your use case. Storage is allocated at the database level, so 120 databases would be consuming much more space than a single database with 120 collections.
Fixed number of collections (original answer)
If you can plan for a fixed number of collections (120 as per your original question description), I think it makes more sense to take this approach rather than using a monolithic collection.
NOTE: the design considerations below still apply, but since the question was updated to clarify that multiple collections are an attempted partitioning scheme, sharding a single collection would be a much more straightforward approach.
The motivations for using separate collections would be:
Your documents for a single large collection will likely have to include some indication of the collection subtype, which may need to be added to multiple indexes and could significantly increase index sizes. With separate collections the subtype is already implicit in the collection namespace.
Sharding is enabled at the collection level. A single large collection only gives you an "all or nothing" approach, whereas individual collections allow you to control which subset(s) of data need to be sharded and choose more appropriate shard keys.
You can use the compact to command to defragment individual collections. Note: compact is a blocking operation, so the normal recommendation for a HA production environment would be to deploy a replica set and use rolling maintenance (i.e. compact the secondaries first, then step down and compact the primary).
MongoDB 2.4 (and 2.2) currently have database-level write lock granularity. In practice this has not proven a problem for the vast majority of use cases, however multiple collections would allow you to more easily move high activity collections into separate databases if needed.
Further to the previous point .. if you have your data in separate collections, these will be able to take advantage of future improvements in collection-level locking (see SERVER-1240 in the MongoDB Jira issue tracker).
The main problem here is that you will gain very little performance in the current MongoDB versions if you separate out collections into the same database. To get any sort of extra performance over a single collection setup you would need to move the collections out into separate databases, then you will have operational overhead for judging what database you should query etc.
So yes, you could go for 120 collections easily however, you won't really gain anything currently due to: https://jira.mongodb.org/browse/SERVER-1240 not being implemented (anytime soon).
Housing billions of documents in a single collection isn't too bad. I presume that even if you was to house this in separate collections it probably would not be on a single server either, just like sharding a single collection, so any speed reduction due to multi server setup will also not matter in this case.
In my personal opinion, using a single collection is easier on everything.

Is it better to model data as a Single collection or separate collections?

As an example, imagine a trivial "helpdesk" type app where there are support tickets, and the app supports multiple companies logging in and managing their tickets.
Given that companies won't interact with each others "Tickets"....
Is it better to have one collection of "Tickets" and query or is it better to create collections of Tickets per Company?
There are a couple of things to consider here.
The first thing is pre-allocation of space. You will find a couple of threads on the mongodb-user group whereby the OP is confused about why their database is taking so much space when their data is taking so little space. This is because when you reach a certain point of pre-alloc within a collection it will create files 2GB in size by default, even if you are only using 100meg of that space.
Now imagine this pre-alloc pattern for 1000 companies; this quickly creates inefficient use of disk space and, in most of the threads, performance and cost problems.
The second thing to consider here is the nssize, which is 2GB maximum. This may seem crazy but what if you do have more than 3 million members (assume a company is a "registered user")? You will quickly use up the maximum namespace file size that MongoDB can give.
Also you will gain no benefit from the lock (on DB level) without splitting them out into separate databases, this of course creates an operational overhead in maintaining the database connections for each company.
MongoDB is typically designed to scale through a cluster rather than scale vertically and scaling vertically is normally considered a bad idea for large websites.
I don't have much time using mongodb, but I'll give some arguments so we can discuss it. I think you should create just one Tickets collection, for the following reasons:
Creating a Collection for each company seems like redundancy.
You will have to create and configurate a collection every time you add a new company to your system in order to create tickets, when in the other hand you will only have to create the company.
I don't know how where you planning to create the link between your company document and it's corresponding ticket collection, but I think is more straightforward to create the link using the id of the company document with an idcompany attribute in the Tickets collection.
I think one of the reasons that might make you consider to create a ticket collection per company, is due to the large amount of data could decrease the speed of your queries (all the companies inserting to the same tickets collection). But the way you could counter this is creating a sharded cluster, using a compound shard key with idcompany and some usefull attribute from the Tickets document, this way is very likely that all the documents of a given company remains in the same shard, so the common queries will perform relatively quick.
My $0.02:
By separating out each company into their own collections, or better, databases... it makes customer migration and individualized backups, restores, imports and exports much easier at the expense of making your code a tad crappier.
Isolating customer data may reduce your data storage requirements, as you won't need to embed the customer ID into every single document. Of course, with separate databases, most drivers will treat that as a separate network connection.
As with everything, there are tradeoffs.