Reshape MATLAB matrix with repeated indicies - matlab

I apologize if this is a repeated question.
Suppose I have a matrix A
0 1 2 3 4 5 6 7
8 9 1 2 3 4 5 6
and a vector b [1,2,3,4,1,2,3,4]. Thus, matrix A contains multiple ordered measurements based on vector b.
How can I reshape the matrix to have dimension [2 2 4], such that A(:,:,1) = [0,4;8,3]?
I understand I need to reshape. I tried using permute, however it does not handle repeated indices.
Thanks!

You are close, you just need to sort the columns before reshaping them
A=[0 1 2 3 4 5 6 7; 8 9 1 2 3 4 5 6]
%A =
% 0 1 2 3 4 5 6 7
% 8 9 1 2 3 4 5 6
b=[1,2,3,4,1,2,3,4]
%b =
% 1 2 3 4 1 2 3 4
[~,idx]=sort(b)
%idx =
% 1 5 2 6 3 7 4 8
A=A(:,idx)
%A =
% 0 4 1 5 2 6 3 7
% 8 3 9 4 1 5 2 6
A=reshape(A,[2,2,4])
%A(:,:,1) =
% 0 4
% 8 3
%A(:,:,2) =
% 1 5
% 9 4
%A(:,:,3) =
% 2 6
% 1 5
%A(:,:,4) =
% 3 7
% 2 6
Be careful, this will only work if you can assure that each number in b is repeated same number of times.

Assuming your b is always some repeated 1:n pattern like it is in your question, you can use:
p=4 % number of indices
permute(reshape(A,size(A,1),p,[]),[1,3,2])

Related

Matlab : How to make label output from interval data?

So i have this data:
A=
2
4
8
9
4
6
1
3
And 3 interval
B=
1 4
5 8
9 12
How to make an output like this
Output=
1
1
2
3
1
2
1
1
The output is based on the interval
you can solve it in several ways. for example, with arrayfun:
A = [2 4 8 9 4 6 1 3].';
B = [1 4;
5 8;
9 12];
res = arrayfun(#(x) find((x >= B(:,1)) & (x <= B(:,2))),A);
If the interval always has the same length, as in your case 4, you can solve it as follows:
Output=ceil(A/4);
If it is not the case, and if not all numbers necessarily fall between any of the intervals, you can compute it as follows. A zero is outputted if a number does not fall within any of the intervals.
% example entry
A=[2 3 4 8 9 4 6 1 3]';
B=[1 4;5 7;9 12]';
Arep=A(:,ones(size(B,2),1)); % replicate array (alternatively use repmat)
Alog=Arep>=B(1,:)&Arep<=B(2,:); % conditional statements, make logical array
Output=Alog*(1:size(B,2))'; % matrix product with natural array to obtain indices

2x2 Array Permutation in Matlab with no loop

I'm currently working on a projec where I have an array and I'm suppose to do a 2x2 permutation with all elements without using an array
I have something like this:
A = [ 1 , 3 , 5 , 7]
and I wanna get something like this
1 1
1 3
1 5
1 7
3 1
3 3
3 5
3 7
5 1
5 3
5 5
5 7
7 1
7 3
7 5
7 7
I would also be interesting getting a function where I can choose if a number can permuted with itself ( egg: no 77 66 55) or if the order matters (egg:5 3 equals to 3 5, therefore only on entry)
You could easily do this with meshgrid
[x,y] = meshgrid(A, A);
out = [x(:), y(:)];
% 1 1
% 1 3
% 1 5
% 1 7
% 3 1
% 3 3
% 3 5
% 3 7
% 5 1
% 5 3
% 5 5
% 5 7
% 7 1
% 7 3
% 7 5
% 7 7
You could remove self-matches (i.e. 5 5, 7 7, etc.)
out(out(:,1) == out(:,2),:) = []
% 1 3
% 1 5
% 1 7
% 3 1
% 3 5
% 3 7
% 5 1
% 5 3
% 5 7
% 7 1
% 7 3
% 7 5
And you could remove duplicates when the order matters by first sorting along the columns and then taking the unique rows
out = unique(sort(out, 2), 'rows')
% 1 3
% 1 5
% 1 7
% 3 5
% 3 7
% 5 7
If you want to have repeated combinations (where order matters) use perms and take unique rows for the first two columns.
Example:
A = [ 1 , 3 , 5 , 7]
R = perms(A)
unique(R(:,1:2), 'rows')
ans =
1 3
1 5
1 7
3 1
3 5
3 7
5 1
5 3
5 7
7 1
7 3
7 5
If however you want truly unique combinations, use combnk
Example:
A = [ 1 , 3 , 5 , 7]
combnk(A, 2) % all combinations using 2 elements
ans =
5 7
3 7
3 5
1 7
1 5
1 3

How to insert elements in a vector at regular intervals in Matlab

I have a vector of 13 entities in Matlab.
a=[3 4 6 8 1 5 8 9 3 7 3 6 2]
I want to append values [1 2 3 4 5] at regular intervals at position 1 5 9 13 & 17.
The final value of a looks like this.
a=[1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2].
The values with italics show the appended values.
How can I do it?
Since you are looking for regular intervals, you can take advantage of the reshape and cat function:
a = [3 4 6 8 1 5 8 9 3 7 3 6 2];
v = [1 2 3 4 5];
l = [1 5 9 13 17];
interval = l(2)-l(1)-1; %computes the interval between inserts
amax = ceil(size(a,2)/interval) * interval; %calculating maximum size for zero padding
a(amax) = 0; %zero padding to allow `reshape`
b = reshape (a,[interval,size(v,2)]); %reshape into matrix
result = reshape(vertcat (v,b), [1,(size(b,1)+1)*size(b,2)]); %insert the values into the right position and convert back into vector
%remove padded zeros
final = result(result ~= 0) %remove the zero padding.
>>final =
Columns 1 through 16
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6
Columns 17 through 18
5 2
Here's an approach using boolean-indexing -
% Inputs
a = [3 4 6 8 1 5 8 9 3 7 3 6 2]
append_vals = [1 2 3 4 5]
append_interval = 4 % Starting at 1st index
% Find out indices of regular intervals where new elements are to be inserted.
% This should create that array [1,5,9,13,17]
N_total = numel(a) + numel(append_vals)
append_idx = find(rem(0:N_total-1,append_interval)==0)
% Get boolean array with 1s at inserting indices, 0s elsewhere
append_mask = ismember(1:N_total,append_idx)
% Setup output array and insert new and old elements
out = zeros(1,N_total)
out(~append_mask) = a
out(append_mask) = append_vals
Alternatively, we can also use linear-indexing and avoid creating append_mask, like so -
% Setup output array and insert new and old elements
out = zeros(1,N_total)
out(append_idx) = append_vals
out(setdiff(1:numel(out),append_idx)) = a
a=[3 4 6 8 1 5 8 9 3 7 3 6 2]; % // Your original values
pos = [1 5 9 13 17]; % // The position of the values you want to insert
b=[1 2 3 4 5]; % // The values you want to insert
% // Pre-allocate a vector with the total size to hold the resulting values
r = zeros(size(a,2)+size(pos,2),1);
r(pos) = b % // Insert the appended values into the resulting vector first
r3 = r.' <1 % // Find the indices of the original values. These will be zero in the variable r but 1 in r3
ans =
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
ind= find(r3==1) % // Find the indices of the original values
ind =
2 3 4 6 7 8 10 11 12 14 15 16 18
r(ind) = a; % // Insert those into the resulting vector.
r.'
ans =
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2
You can use this function to append a bunch of values to an existing vector, given their positions in the new vector:
function r=append_interval(a,v,p)
% a - vector with initial values
% v - vector containing values to be inserted
% p - positions for values in v
lv=numel(v); % number of elements in v vector
la=numel(a); % number of elements in a vector
column_a=iscolumn(a); % check if a is a column- or row- wise vector
tot_elements=la+lv;
% size of r is tha max between the total number of elements in the two vectors and the higher positin in vector p (in this case missing positions in a are filled with zeros)
lr=max([max(p) tot_elements]);
% initialize r as nan vector
r=zeros(column_a*(lr-1)+1,~column_a*(lr-1)+1)/0;
% set elements in p position to the corresponding values in v
r(p)=v;
% copy values in a in the remaining positions and fill with zeros missing entries (if any)
tot_missing_values=lr-tot_elements;
if(tot_missing_values)
remaining_values=cat(2-iscolumn(a),a,zeros(column_a*(tot_missing_values-1)+1,~column_a*(tot_missing_values-1)+1));
else
remaining_values=a;
end
% insert values
r(isnan(r))=remaining_values;
You can use row-wise or column-wise vectors; the orientation of r will be the same of that of a.
Input:
a =
3 4 6 8 1 5 8 9 3 7 3 6 2
v =
1 2 3 4 5
p =
1 5 9 13 17
Output:
>> append_interval(a,v,p)
ans =
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2
Every sequence of positive positions is allowed and the function will pad for you with zeros the final vector, in case you indicate a position exceding the sum of the original vector and added items.
For example, if:
v3 =
1 2 3 4 5 6 90
p3 =
1 5 9 13 17 30 33
you get:
append_interval(a,v3,p3)
ans =
Columns 1 through 19
1 3 4 6 2 8 1 5 3 8 9 3 4 7 3 6 5 2 0
Columns 20 through 33
0 0 0 0 0 0 0 0 0 0 6 0 0 90
Hope this will help.

How to duplicate elements of a matrix without using the repmat function

Given the matrix I = [1,2;3,4], I would like to duplicate the elements to create a matrix I2 such that:
I2 = [1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
3 3 3 4 4 4
3 3 3 4 4 4
3 3 3 4 4 4]
Other than using repmat, what other methods or functions are available?
Use kron:
>> N = 3 %// Number of times to replicate a number in each dimension
>> I = [1,2;3,4];
>> kron(I, ones(N))
ans =
1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
3 3 3 4 4 4
3 3 3 4 4 4
3 3 3 4 4 4
This probably deserves some explanation in case you're not aware of what kron does. kron stands for the Kronecker Tensor Product. kron between two matrices A of size m x n and B of size p x q creates an output matrix of size mp x nq such that:
Therefore, for each coefficient in A, we take this value, multiply it with every value in the matrix B and we position these matrices in the same order as we see in A. As such, if we let A = I, and B be the 3 x 3 matrix full of ones, you thus get the above result.
Using indexing:
I = [1, 2; 3, 4]; %// original matrix
n = 3; %// repetition factor
I2 = I(ceil(1/n:1/n:size(I,1)), ceil(1/n:1/n:size(I,2))); %// result
One-liner with bsxfun -
R = 3; %// Number of replications
I2 = reshape(bsxfun(#plus,permute(I,[3 1 4 2]),zeros(R,1,R)),R*size(I,1),[])
Sample run -
I =
3 2 5
9 8 9
I2 =
3 3 3 2 2 2 5 5 5
3 3 3 2 2 2 5 5 5
3 3 3 2 2 2 5 5 5
9 9 9 8 8 8 9 9 9
9 9 9 8 8 8 9 9 9
9 9 9 8 8 8 9 9 9

Rearranging matrix using col2im in Matlab

My matrix is this:
0 3 0
0 1 2
4 4 1
I use im2col on it like this:
im2col(A, [2 2], 'sliding')
which correctly yields this:
0 0 3 1
0 4 1 4
3 1 0 2
1 4 2 1
I call this matrix K. Now I use col2im to go back to my original matrix. From the Matlab documentation I use this:
col2im(K, [2 2], [5 5],'sliding')
But this doesn't gives me my original matrix A. Reason being [5 5] should be [4 4] to get a 3*3 matrix for starters. But when I do that I get
??? Error using ==> reshape
To RESHAPE the number of elements must not change.
Why is that? And how can I get my original matrix back?
Fromthe docs:
A = col2im(B,[m n],[mm nn],'sliding') rearranges the row vector B into
a matrix of size (mm-m+1)-by-(nn-n+1). B must be a vector of size
1-by-(mm-m+1)*(nn-n+1). B is usually the result of processing the
output of im2col(...,'sliding') using a column compression function
(such as sum).
So that says to me you should be trying something like:
col2im(sum(K), [2 2], [4 4],'sliding')
however that would require K to have 9 columns. I don't have the image processing toolbox handy to test this right now
Your col2im doesn't work because it uses reshape and for that the number of elements of the matrix you wish to reshape (K) and the new one, need to be the same. This is not the case anymore, as through your transformation of A with im2col you obviously changed that. A has 9 and K 16 elements.
So you basically need to get back to a 3*3 matrix again by getting rid of the redundand doubled elements (due to the overlapping 2*2 blocks used in im2col) in K.
For that you could just make a new matrix (C) with the elements that you need:
C = [K([1,3,11;2,4,12;6,8,16])]
As long as you first went from a 3*3 to a 4*4 matrix using the same order of blocks this should work.
Maybe you could tell us more about what you really want to achieve, because I don't see any reason for this in the first place. It may also be possible that you might be better off using other functions instead, but I can only see that if I know what the reasoning behind your question is.
clear
clc
img = double(imread('tire.tif'));
[r c] = size(img);
w = 8;
imgBlock = im2col(img,[w w],'sliding'); imgBlock = imgBlock(:);
[x y] = meshgrid(1:c,1:r);
xx = im2col(x,[w w], 'sliding'); xx = xx(:);
yy = im2col(y,[w w], 'sliding'); yy = yy(:);
img2 = accumarray([yy xx], imgBlock, [], #mean);
figure,imshow(img, []);
figure,imshow(img2,[]);
% random matrix as image
img = randi(10,4)
img =
6 2 2 7
5 8 7 8
1 4 3 5
4 6 7 1
% matrix size
[r c] = size(img)
% patch size
w = 2;
% image to patch
imgBlock = im2col(img,[w w],'sliding')
% image patchs matrix to a vector
imgBlock = imgBlock(:);
r =
4
c =
4
imgBlock =
6 5 1 2 8 4 2 7 3
5 1 4 8 4 6 7 3 7
2 8 4 2 7 3 7 8 5
8 4 6 7 3 7 8 5 1
% index matrix size equal image size
[x y] = meshgrid(1:c,1:r)
% index matric to patchs;to vector
xx = im2col(x,[w w], 'sliding'); xx = xx(:);
yy = im2col(y,[w w], 'sliding'); yy = yy(:);
x =
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4
y =
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
% yy :row index xx: column index
% applies the function mean to each subset of elements in imgBlock that have identical subscripts in [yy xx].
img2 = accumarray([yy xx], imgBlock, [], #mean);
img
img2
img =
6 2 2 7
5 8 7 8
1 4 3 5
4 6 7 1
img2 =
6 2 2 7
5 8 7 8
1 4 3 5
4 6 7 1
% [col,row,value]
a = [xx,yy,imgBlock]
a =
1 1 6
1 2 5
2 1 2
2 2 8
1 2 5
1 3 1
2 2 8
2 3 4
1 3 1
1 4 4
2 3 4
2 4 6
2 1 2
2 2 8
3 1 2
3 2 7
2 2 8
2 3 4
3 2 7
3 3 3
2 3 4
2 4 6
3 3 3
3 4 7
3 1 2
3 2 7
4 1 7
4 2 8
3 2 7
3 3 3
4 2 8
4 3 5
3 3 3
3 4 7
4 3 5
4 4 1
% The number of times that img(2,2) occurs in the matrix img
a(xx == 2 & yy == 2,:)
ans =
2 2 8
2 2 8
2 2 8
2 2 8