I have a collection with documents like this
{
"_id" : ObjectId("5773ac6a486f811694711875"),
"bsk" : {
"bskItems" : [
{
"id" : 4,
"bskItemLineType" : "SaleItem",
"product" : {
"description" : "reblochon"
}
},
{
"id" : 5,
"bskItemLineType" : "SaleItem",
"product" : {
"description" : "Pinot Noir"
}
},
{
"id" : 13,
"bskItemLineType" : "PromotionItem",
"promotionApplied" : {
"bskIds" : [
4,
5
]
}
},
{
"id" : 8,
"bskItemLineType" : "SaleItem",
"product" : {
"description" : "Food"
}
},
{
"id" : 10,
"bskItemLineType" : "SubTotalItem"
},
{
"id" : 12,
"bskItemLineType" : "TenderItem"
},
{
"id" : 14,
"bskItemLineType" : "ChangeDue"
}
]
}
}
I want an output where I can see the "promotionsApplied" and the descriptions of the items they applied to. For the document above the "promotionsApplied" were to "bsk.BskItems.id" 4 and 5 so I would like the output to be:
{
"_id": xxxxx,
"promotionAppliedto : "reblochon"
},
{
"_id": xxxxx,
"promotionAppliedto : "Pinot Noir"
}
the query below:
db.getCollection('DSTest').aggregate([
{$project:{"bsk.bskItems.product.description":1,"bsk.bskItems.id":1}},
{$unwind: "$bsk.bskItems"},
])
gets me the descriptions
db.getCollection('DSTest').aggregate([
{$project:{"bsk.bskItems.promotionApplied.bskIds":1}},
{$unwind: "$bsk.bskItems"},
{$unwind:"$bsk.bskItems.promotionApplied.bskIds"},
])
gets me the promotions applied. I was hoping to be able to use $lookup to join the two based on _id and bsk.bskItems.promotionApplied.bskIds and _id and bsk.bskItems.id, but I can't figure out how.
I don't know if you solved your problem or if this is relevant anymore but I figured out your question:
db.DSTest.aggregate([
{
$unwind: "$bsk.bskItems"
},
{
$project: {
baItId: { $ifNull: [ "$bsk.bskItems.id", 0 ] },
"bsk": {
"bskItems": {
"promotionApplied": {
"bskIds": { $ifNull: [ "$bsk.bskItems.promotionApplied.bskIds", [0] ] }
}
}
},
"product": { $ifNull: [ "$bsk.bskItems.product.description", "" ] },
}
},
{
$unwind: "$bsk.bskItems.promotionApplied.bskIds"
},
{
$project: {
baItId: 1,
proAppliedId:
{
$cond: { if: { $eq: [ "$bsk.bskItems.promotionApplied.bskIds", 0 ] }, then: "$baItId", else: "$bsk.bskItems.promotionApplied.bskIds" }
},
product: 1
}
},
{
$group: {
_id: { proAppliedId: "$proAppliedId", docId: "$_id"},
product: { $push: { "p": "$product" } },
groupCount: { $sum: 1 }
}
},
{
$unwind: "$product"
},
{
$match: {
"product.p": {$ne: ""}, "groupCount": { $gt: 1}
}
},
{
$project: {
_id: "$_id.docId",
"promotionAppliedto": "$product.p"
}
}
])
With the dummy document you gave this is the result I get:
{
"_id" : ObjectId("5773ac6a486f811694711875"),
"promotionAppliedto" : "reblochon"
}
{
"_id" : ObjectId("5773ac6a486f811694711875"),
"promotionAppliedto" : "Pinot Noir"
}
But my advise is to put some thought in your database structure next time. You had apples and pears, so we had to make an Asian pear in order to get to this result. Also from the aggregation levels you see it was not an easy job. That could have been much easier if you had separated the arrays that contained the field product from the ones that contained the field promotionApplied.
To break it down and explain what is happening step by step:
{
$unwind: "$bsk.bskItems"
}
By unwinding we are flattening our array. We need this in order to access the fields inside the array and do operations on them . More about $unwind
{
$project: {
baItId: { $ifNull: [ "$bsk.bskItems.id", 0 ] },
"bsk": {
"bskItems": {
"promotionApplied": {
"bskIds": { $ifNull: [ "$bsk.bskItems.promotionApplied.bskIds", [0] ] }
}
}
},
"product": { $ifNull: [ "$bsk.bskItems.product.description", "" ] },
}
}
baItId: { $ifNull: [ "$bsk.bskItems.id", 0 ] }
With this line we just make sure that every document gets an basket item id. In your case they all do, I just added it to make sure. And if some document didn't have a value for that field we set it to 0 (you can set it to -1 or whatever you want)
"bsk": {
"bskItems": {
"promotionApplied": {
"bskIds": { $ifNull: [ "$bsk.bskItems.promotionApplied.bskIds", [0] ] }
}
}
}
Here we are creating an array for the field "$bsk.bskItems.promotionApplied.bskIds". Since not all documents have this field we have to add to them all, otherwise we are comparing oranges with apples.
"product": { $ifNull: [ "$bsk.bskItems.product.description", "" ] }
As said before, we have to make our documents look all alike so we also add $bsk.bskItems.product.description to the ones that don't have this field. Those who don't have the field we set it to an empty string
Now all our documents have the same structure and we can start with the actual sorting out.
{
$unwind: "$bsk.bskItems.promotionApplied.bskIds"
}
Since we want to access the ids inside $bsk.bskItems.promotionApplied.bskIds we have to unwind this array as well.
{
$project: {
baItId: 1,
proAppliedId:
{
$cond: { if: { $eq: [ "$bsk.bskItems.promotionApplied.bskIds", 0 ] }, then: "$baItId", else: "$bsk.bskItems.promotionApplied.bskIds" }
},
product: 1
}
}
baItId: 1 and product: 1, are just being passed on. The proAppliedId will contain our bsk.bskItems.promotionApplied.bskIds. If they are 0 then the get the same id as the field $baItId, otherwise they keep their id.
{
$group: {
_id: { proAppliedId: "$proAppliedId", docId: "$_id"},
product: { $push: { "p": "$product" } },
groupCount: { $sum: 1 }
}
}
Now finally we can group our documents by $proAppliedId that we created in the previous aggregation pipeline.
We also push the product values in an array. So there will be now arrays that contain two entries.
One with the value that we look for and one with an empty string because we did that in a previous aggregation pipeline "product": { $ifNull: [ "$bsk.bskItems.product.description", "" ] }
We also create a new field called groupCount to count the documents that were grouped together.
{ $project: {
_id: "$_id.docId",
"promotionAppliedto": "$product.p" } }
In the final project we just build the final document by how we want it to look like.
Hope you understand now why thinking, were and how we save things, matter.
Using document type database - it will be better to store promotion metadtaa instead of only id.
Please see attached example
"promotionApplied" : [{
bskId : 4,
name : "name",
otherData : "otherData"
}, {
bskId : 5,
name : "name5",
otherData : "otherData5"
}
]
Related
I have a table with documents that look like this:
{
"_id" : ObjectId("bbbbbb1d9486c90479aaaaaa"),
"record" : {
"debug" : false
"type" : "MX_GTI",
"products" : [
"DAM"
],
"agents" : [
{
"services" : "mssql",
"hpsAvg" : 772,
"hpsMax" : 42901
},
{
"services" : "mssql",
"hpsAvg" : 95,
"hpsMax" : 21631
},
{
"services" : "oracle",
"hpsAvg" : 0,
"hpsMax" : 0
},
{
"services" : "db2",
"hpsAvg" : 0,
"hpsMax" : 0
}
]
}
}
I need to find the average and max HPS per DB type (the field services) across all the agents in all records that match the condition ("type": "MX_GTI"),
The max is the largest hpsMax across all agents with the database type, and the average is the average of all the non-zero values of hpsAvg.
The output should look like this:
[
{
"dbtype": "oracle",
"maxHPS": 123456,
"avgHPS": 12345
},…
]
Thank you
The difficult part is to make average to work if the value is 0.
$avg aggregation ignores non numeric values, so we need to replace 0 values with null before applying average. We can use $cond to make this transformation.
Playground
db.collection.aggregate([
{
$match: {
"record.type": "MX_GTI"
}
},
{
$unwind: "$record.agents"
},
{
$addFields: {
"record.agents.hpsAvg": {
$cond: {
if: {
$eq: [
"$record.agents.hpsAvg",
0
]
},
then: null,
else: "$record.agents.hpsAvg"
}
}
}
},
{
$group: {
_id: "$record.agents.services",
maxHPS: {
$max: "$record.agents.hpsMax"
},
avgHPS: {
$avg: "$record.agents.hpsAvg"
}
}
},
{
$addFields: {
dbType: "$_id"
}
},
{
$project: {
_id: 0
}
}
])
You can start from here
db.collection.aggregate([
{
$match: {
"record.type": "MX_GTI"
}
},
{
$unwind: "$record.agents"
},
{
$group: {
_id: "$record.agents.services",
"maxHPS": {
$max: "$record.agents.hpsMax"
},
"avgHPS": {
$avg: "$record.agents.hpsMax"
}
}
}
])
Sample Playground
New to Mongo, have found lots of examples of removing dupes from arrays of strings using the aggregation framework, but am wondering if possible to remove dupes from array of objects based on a field in the object. Eg
{
"_id" : ObjectId("5e82661d164941779c2380ca"),
"name" : "something",
"values" : [
{
"id" : 1,
"val" : "x"
},
{
"id" : 1,
"val" : "x"
},
{
"id" : 2,
"val" : "y"
},
{
"id" : 1,
"val" : "xxxxxx"
}
]
}
Here I'd like to remove dupes based on the id field. So would end up with
{
"_id" : ObjectId("5e82661d164941779c2380ca"),
"name" : "something",
"values" : [
{
"id" : 1,
"val" : "x"
},
{
"id" : 2,
"val" : "y"
}
]
}
Picking the first/any object with given id works. Just want to end up with one per id. Is this doable in aggregation framework? Or even outside aggregation framework, just looking for a clean way to do this. Need to do this type of thing across many documents in collection, which seems like a good use case for aggregation framework, but as I mentioned, newbie here...thanks.
Well, you may get desired result 2 ways.
Classic
Flatten - Remove duplicates (pick first occurrence) - Group by
db.collection.aggregate([
{
$unwind: "$values"
},
{
$group: {
_id: "$values.id",
values: {
$first: "$values"
},
id: {
$first: "$_id"
},
name: {
$first: "$name"
}
}
},
{
$group: {
_id: "$id",
name: {
$first: "$name"
},
values: {
$push: "$values"
}
}
}
])
MongoPlayground
Modern
We need to use $reduce operator.
Pseudocode:
values : {
var tmp = [];
for (var value in values) {
if !(value.id in tmp)
tmp.push(value);
}
return tmp;
}
db.collection.aggregate([
{
$addFields: {
values: {
$reduce: {
input: "$values",
initialValue: [],
in: {
$concatArrays: [
"$$value",
{
$cond: [
{
$in: [
"$$this.id",
"$$value.id"
]
},
[],
[
"$$this"
]
]
}
]
}
}
}
}
}
])
MongoPlayground
You can use $reduce, Try below query :
db.collection.aggregate([
{
$addFields: {
values: {
$reduce: {
input: "$values",
initialValue: [],
in: {
$cond: [
{ $in: ["$$this.id", "$$value.id"] }, /** Check if 'id' exists in holding array if yes push same array or concat holding array with & array of new object */
"$$value",
{ $concatArrays: ["$$value", ["$$this"]] }
]
}
}
}
}
}
]);
Test : MongoDB-Playground
This is my my data in Mongodb
{
"d" : {
"results" : [
{
"slack_id" : "RAGHU#TN.COM",
"connector_id" : "GRECLNT900",
"sys_role" : "DEV",
"user_id" : "RAGHU"
},
{
"slack_id" : "RAGHU#TN.COM",
"connector_id" : "GRECLNT900",
"sys_role" : "PRD",
"user_id" : "RAGHU",
"question" : "What is your favorite color?",
"Answer" : "Orange"
},
]
}
}
If i am giving RAGHU#TN.COM. then i want display sys_role. Output like this[DEV, PRD]
I am trying this way
x = mydb.mycollection.distinct("sys-role")
But I get an empty array like [ ]
You have to treat the cursor as a reference(personally I see it as a reference in C), and then de-reference it to see the result.(What is inside the address)
For the specific column, here is the result from command prompt:
my_cursor = mydb.mycollection.distinct("sys-role")
for x in my_cursor:
print('{0}'.format(x['sys_role']))
The distinct operator is not inter-operatable thus it's hard to filter by slack_id first. I would recommande using aggregation pipelines.
Here is an example.
[
{
'$match': {
'slack_id': 'RAGHU#TN.COM'
}
}, {
'$group': {
'_id': 'slack_id',
'result': {
'$addToSet': 'sys_role'
}
}
}
]
With this pipeline, your sys_role set will be in the .result field.
Using Mongo aggregation query you will get required result set. Try this:
db.collection.aggregate([
{
"$match": {
"d.results.slack_id": "RAGHU#TN.COM"
}
},
{
$group: {
_id: "$d.results.slack_id",
sys_role: {
$push: "$d.results.sys_role"
}
}
}
])
db.getCollection("collection").aggregate(
// Pipeline
[
// Stage 1
{
$project: {
results: {
$filter: {
input: "$d.results",
as: "item",
cond: { $eq: [ "$$item.slack_id", 'RAGHU#TN.COM' ] }
}
}
}
},
// Stage 2
{
$unwind: {
path : "$results",
preserveNullAndEmptyArrays : false // optional
}
},
// Stage 3
{
$group: {
_id:'$results.slack_id',
sys_roles:{$addToSet:'$results.sys_role'}
}
},
]
);
I am trying to update my mongo database which has following structure.
{
"_id" : ObjectId("5a64d076bfd103df081967ae"),
"values" : [
{
"date" : "2018-01-22",
"Price" : "1289.4075"
},
{
"date" : "2018-01-22",
"Price" : "1289.4075"
},
{
"date" : "2015-05-18",
"Price" : 1289.41
}
],
"Code" : 123456,
"schemeStatus" : "Inactive"
}
I want to compare first 2 array element's date value i.e values[0].date and values[1].date. If both matches then I want to delete values[0] so that there will be only 1 entry with that date.
You can use aggregation framework's pipeline with $out as a last stage to update your collection
db.collection.aggregate([
{
$addFields: {
sameDate: {
$let: {
vars: {
fst: { $arrayElemAt: [ "$values", 0 ] },
snd: { $arrayElemAt: [ "$values", 1 ] }
},
in: { $cond: { if: { $eq: [ "$$fst.date", "$$snd.date" ] }, then: 1, else: 0 } }
}
}
}
},
{
$project: {
_id: 1,
values : { $cond: { if: { $eq: [ "$sameDate", 0 ] }, then: "$values", else: { $slice: [ "$values", 1, { $size: "$values" } ] } } },
Code: 1,
schemeStatus: 1
}
},
{ $out: "collection" }
])
Some more important operators used here:
$cond to handle if-else logic
$let to define some helper variables
$arrayElemAt to get first and second element
$slice to pop first element
I am trying to fetch all records (and count of all records) for a structure like the following,
{
id: 1,
level1: {
level2:
[
{
field1:value1;
},
{
field1:value1;
},
]
}
},
{
id: 2,
level1: {
level2:
[
{
field1:null;
},
{
field1:value1;
},
]
}
}
My requirement is to fetch the number of records that have field1 populated (atleast one in level2). I need to say fetch all the ids or the number of such ids.
The query I am using is,
db.table.find({},
{
_id = id,
value: {
$elemMatch: {'level1.level2.field1':{$exists: true}}
}
}
})
Please suggest.
EDIT1:
This is the question I was trying to ask in the comment. I was unable to elucidate in the comment properly. Hence, editing the question.
{
id: 1,
level1: {
level2:
[
{
field1:value1;
},
{
field1:value1;
},
]
}
},
{
id: 2,
level1: {
level2:
[
{
field1:value2;
},
{
field1:value2;
},
{
field1:value2;
}
]
}
}
{
id: 3,
level1: {
level2:
[
{
field1:value1;
},
{
field1:value1;
},
]
}
}
The query we used results in
value1: 4
value2: 3
I want something like
value1: 2 // Once each for documents 1 & 3
value2: 1 // Once for document 2
You can do that with the following find query:
db.table.find({ "level1.level2" : { $elemMatch: { field1 : {$exists: true} } } }, {})
This will return all documents that have a field1 in the "level1.level2" structure.
For your question in the comment, you can use the following aggregation to "I had to return a grouping (and the corresponding count) for the values in field1":
db.table.aggregate(
[
{
$unwind: "$level1.level2"
},
{
$match: { "level1.level2.field1" : { $exists: true } }
},
{
$group: {
_id : "$level1.level2.field1",
count : {$sum : 1}
}
}
]
UPDATE: For your question "'value1 - 2` At level2, for a document, assume all values will be the same for field1.".
I hope i understand your question correctly, instead of grouping only on the value of field1, i added the document _id as an xtra grouping:
db.table.aggregate(
[
{
$unwind: "$level1.level2"
},
{
$match: {
"level1.level2.field1" : { $exists: true }
}
},
{
$group: {
_id : { id : "$_id", field1: "$level1.level2.field1" },
count : {$sum : 1}
}
}
]
);
UPDATE2:
I altered the aggregation and added a extra grouping, the aggregation below gives you the results you want.
db.table.aggregate(
[
{
$unwind: "$level1.level2"
},
{
$match: {
"level1.level2.field1" : { $exists: true }
}
},
{
$group: {
_id : { id : "$_id", field1: "$level1.level2.field1" }
}
},
{
$group: {
_id : { id : "$_id.field1"},
count : { $sum : 1}
}
}
]
);