Unity - get position of UI Slider Handle - unity3d

I am working on Unity 4.7 project and need to create shooting on the target. I simulated gunpoint using horizontal and vertical slider moving on the time. When I click the button I need to memorize x and y coordinates of handles and instantiate bullet hole at this point but don't know how to get cords of sliders handle. It is possible to get values but it seems that it doesn't correspond to coordinates. If horizontal slider changes its value for 1, would its handle change x position for 1?

Use this then:
public static Vector3 GetScreenPositionFromWorldPosition(Vector3 targetPosition)
{
Vector3 screenPos = Camera.main.WorldToScreenPoint(targetPosition);
return screenPos;
}
Have the reference to Handles of the horizontal and vertical sliders, and use them like:
Vector3 pos = GetScreenPositionFromWorldPosition(horizontalHandle.transform.position);

Related

How to put vertical bar at the end of filled area of unity3d horizontal slider

I am using unity3d horizontal slider to show a character's life like below
But I want to show a vertical bar at the end of filled area like in below image
Any idea? how to achieve this.
You can do this by Lerping the localPosition of your vertical bar.
This would look something like the following:
GameObject verticalBar; //the gameobject you want to use
GameObject player; //Assume this is your play that has the health property
Vector3 startPos; //start position of your total healthbar
Vector3 endPos; //end position of your total healthbar
private void UpdateVerticalBarPosition()
{
float normalized = player.currentHealth / player. maxHealth //this normalizes your current health to be between 0 and 1
if(!float IsNaN(normalized))//(optional) makes sure the value is valid.
{
verticalBar.transform.localPosition = Vector3.Lerp(startPos, endPos, normalized);
}
}
This method will normalize your current HP. meaning that if for example your player has 70 health left of a total 100 health, the normalized value will be 0.7f, or 70% of its total health.
Using this normalized value in a Vector3.Lerp that is clamped between startPos and endPos (here startPos would be the starting position of your total healthbar, so the left side of your grey bar. And endPos the ending positon of your total health bar, so the right side of your grey bar) will put the vertical bar 70% along of the way of your health bar. Which should be the same point where your yellow/orange bar stops.
If you call this method once when hp has changed it will jump to the new value. But if you take damage gradually you can also run it in a loop to make it slide across smoothly.
Alternatively. If you use Unity's Slider component for your healthbar you can also just use the Slider.handleRect. found in the documentations here which would look something like this
Slider healthBar; //the slider used for your healthbar
GameObject verticalBar; // the bar you want displayed at the end of the healthbar
Start()
{
healthBar.handleRect = verticalBar;
}
I solved this, It was pretty simple though!
I just a added the vertical bar texture as child of fill image inside slider and I kept it right aligned.
cheers!

Best way to use Farseer/Box2D's DebugDraw in Unity3D?

Box2D/Farseer 2D physics has a useful component which draws a simple representation of the physics world using primitives (lines, polygons, fills, colors). Here's an example:
What's the best way to accomplish this in Unity3D? Is there a simple way to render polygons with fill, lines, points, etc.? If so, I could implement the interface of DebugDraw with Unity's API, but I'm having trouble finding how to implement primitive rendering like this with Unity.
I understand it'll be in 3D space, but I'll just zero-out one axis and use it basically as 2D.
In case you mean actually a debug box just displayed in the SceneView not in the GameView you can use Gizmos.DrawWireCube
void OnDrawGizmos()
{
//store original gizmo color
var color = Gizmos.color;
// store original matrix
var matrix = Gizmos.matrix;
// set gizmo to local space
Gizmos.matrix = transform.localToWorldMatrix;
// Draw a yellow cube at the transform position
Gizmos.color = Color.yellow;
// here set the scale e.g. for a "almost" 2d box simply use a very small z value
Gizmos.DrawWireCube(transform.position, new Vector3(0.5f, 0.2f, 0.001f));
// restor matrix
Gizmos.matrix = matrix;
// restore color
Gizmos.color = color;
}
you can use OnDrawGizmosSelected to show the Gizmo only if the GameObject is selected
you could also extend this by getting the box size over the inspector
[SerializeField] private Vector3 _boxScale;
and using
Gizmos.DrawWireCube(transform.position, _boxScale);

Leap Motion - Angle of proximal bone to metacarpal (side to side movement)

I am trying to get the angle between the bones, such as the metacarpal bone and the proximal bone (angle of moving the finger side to side, for example the angle when your index finger is as close to your thumb as you can move it and then the angle when your index finger is as close to your middle finger as you can move it).
I have tried using Vector3.Angle with the direction of the bones but that doesn't work as it includes the bending of the finger, so if the hand is in a fist it gives a completely different value to an open hand.
What i really want is a way i can "normalize" (i know normalizing isn't the correct term but it's the best i could think of) the direction of the bones so that even if the finger is bent, the direction vector would still point out forwards and not down, but would be in the direction of the finger (side to side).
I have added a diagram below to try and illustrate what i mean.
In the second diagram, the blue represents what i currently get if i use the bone's directions, the green is the metacarpal direction and the red is what i want (from the side view). The first diagram shows what i am looking for from a top-down view. The blue line is the metacarpal bone direction and in this example the red line is the proximal bone direction, with the green smudge representing the angle i am looking for.
To get this value, you need to "uncurl" the finger direction based on the current metacarpal direction. It's a little involved in the end; you have to construct some basis vectors in order to uncurl the hand along juuust the right axis. Hopefully the comments in this example script will explain everything.
using Leap;
using Leap.Unity;
using UnityEngine;
public class MeasureIndexSplay : MonoBehaviour {
// Update is called once per frame
void Update () {
var hand = Hands.Get(Chirality.Right);
if (hand != null) {
Debug.Log(GetIndexSplayAngle(hand));
}
}
// Some member variables for drawing gizmos.
private Ray _metacarpalRay;
private Ray _proximalRay;
private Ray _uncurledRay;
/// <summary>
/// This method returns the angle of the proximal bone of the index finger relative to
/// its metacarpal, when ignoring any angle due to the curling of the finger.
///
/// In other words, this method measures the "side-to-side" angle of the finger.
/// </summary>
public float GetIndexSplayAngle(Hand h) {
var index = h.GetIndex();
// These are the directions we care about.
var metacarpalDir = index.bones[0].Direction.ToVector3();
var proximalDir = index.bones[1].Direction.ToVector3();
// Let's start with the palm basis vectors.
var distalAxis = h.DistalAxis(); // finger axis
var radialAxis = h.RadialAxis(); // thumb axis
var palmarAxis = h.PalmarAxis(); // palm axis
// We need a basis whose forward direction is aligned to the metacarpal, so we can
// uncurl the finger with the proper uncurling axis. The hand's palm basis is close,
// but not aligned with any particular finger, so let's fix that.
//
// We construct a rotation from the palm "finger axis" to align it to the metacarpal
// direction. Then we apply that same rotation to the other two basis vectors so
// that we still have a set of orthogonal basis vectors.
var metacarpalRotation = Quaternion.FromToRotation(distalAxis, metacarpalDir);
distalAxis = metacarpalRotation * distalAxis;
radialAxis = metacarpalRotation * radialAxis;
palmarAxis = metacarpalRotation * palmarAxis;
// Note: At this point, we don't actually need the distal axis anymore, and we
// don't need to use the palmar axis, either. They're included above to clarify that
// we're able to apply the aligning rotation to each axis to maintain a set of
// orthogonal basis vectors, in case we wanted a complete "metacarpal-aligned basis"
// for performing other calculations.
// The radial axis, which has now been rotated a bit to be orthogonal to our
// metacarpal, is the axis pointing generally towards the thumb. This is our curl
// axis.
// If you're unfamiliar with using directions as rotation axes, check out the images
// here: https://en.wikipedia.org/wiki/Right-hand_rule
var curlAxis = radialAxis;
// We want to "uncurl" the proximal bone so that it is in line with the metacarpal,
// when considered only on the radial plane -- this is the plane defined by the
// direction approximately towards the thumb, and after the above step, it's also
// orthogonal to the direction our metacarpal is facing.
var proximalOnRadialPlane = Vector3.ProjectOnPlane(proximalDir, radialAxis);
var curlAngle = Vector3.SignedAngle(metacarpalDir, proximalOnRadialPlane,
curlAxis);
// Construct the uncurling rotation from the axis and angle and apply it to the
// *original* bone direction. We determined the angle of positive curl, so our
// rotation flips its sign to rotate the other direction -- to _un_curl.
var uncurlingRotation = Quaternion.AngleAxis(-curlAngle, curlAxis);
var uncurledProximal = uncurlingRotation * proximalDir;
// Upload some data for gizmo drawing (optional).
_metacarpalRay = new Ray(index.bones[0].PrevJoint.ToVector3(),
index.bones[0].Direction.ToVector3());
_proximalRay = new Ray(index.bones[1].PrevJoint.ToVector3(),
index.bones[1].Direction.ToVector3());
_uncurledRay = new Ray(index.bones[1].PrevJoint.ToVector3(),
uncurledProximal);
// This final direction is now uncurled and can be compared against the direction
// of the metacarpal under the assumption it was constructed from an open hand.
return Vector3.Angle(metacarpalDir, uncurledProximal);
}
// Draw some gizmos for debugging purposes.
public void OnDrawGizmos() {
Gizmos.color = Color.white;
Gizmos.DrawRay(_metacarpalRay.origin, _metacarpalRay.direction);
Gizmos.color = Color.blue;
Gizmos.DrawRay(_proximalRay.origin, _proximalRay.direction);
Gizmos.color = Color.red;
Gizmos.DrawRay(_uncurledRay.origin, _uncurledRay.direction);
}
}
For what it's worth, while the index finger is curled, tracked Leap hands don't have a whole lot of flexibility on this axis.

How to calculate number of sprites to spawn across the device's screen height?

In my Unity2D project, I am trying to spawn my sprite on top of each other and across the entire height of the device's screen. For example to give an idea, think of a box on top of each other across the entire device's screen height. In my case, I'm spawning arrow sprites instead of boxes
I already got the sprites spawning on top of each other successfully. My problem now is how to calculate how many sprites to spawn to make sure it spreads across the screen's height.
I currently have this snippet of code:
public void SpawnInitialArrows()
{
// get the size of our sprite first
Vector3 arrowSizeInWorld = dummyArrow.GetComponent<Renderer>().bounds.size;
// get screen.height in world coords
float screenHeightInWorld = Camera.main.ScreenToWorldPoint(new Vector3(0, Screen.height, 0)).y;
// get the bottom edge of the screen in world coords
Vector3 bottomEdgeInWorld = Camera.main.ScreenToWorldPoint(new Vector3(0,0,0));
// calculate how many arrows to spawn based on screen.height/arrow.size.y
int numberOfArrowsToSpawn = (int)screenHeightInWorld / (int)arrowSizeInWorld.y;
// create a vector3 to store the position of the previous arrow
Vector3 lastArrowPos = Vector3.zero;
for(int i = 0; i < numberOfArrowsToSpawn; ++i)
{
GameObject newArrow = this.SpawnArrow();
// if this is the first arrow in the list, spawn at the bottom of the screen
if(LevelManager.current.arrowList.Count == 0)
{
// we only handle the y position because we're stacking them on top of each other!
newArrow.transform.position = new Vector3(newArrow.transform.position.x,
bottomEdgeInWorld.y + arrowSizeInWorld.y/2,
newArrow.transform.position.z);
}
else
{
// else, spawn on top of the previous arrow
newArrow.transform.position = new Vector3(newArrow.transform.position.x,
lastArrowPos.y + arrowSizeInWorld.y,
newArrow.transform.position.z);
}
// save the position of this arrow so that we know where to spawn the next arrow!
lastArrowPos = new Vector3(newArrow.transform.position.x,
newArrow.transform.position.y,
newArrow.transform.position.z);
LevelManager.current.arrowList.Add(newArrow);
}
}
The problem with my current code is that it doesn't spawn the correct number of sprites to cover the entire height of the device's screen. It only spawns my arrow sprites approximately up to the middle of the screen. What I want is for it to be able to spawn up to the top edge of the screen.
Anyone know where the calculation went wrong? and how to make the current code cleaner?
If sprites are rendered via camera mode in perspective and the sprites appear to have varying sizes when displayed on the screen (sprites farther away from the camera are smaller than sprites that are closer to the camera) then a new way to calculate the numberOfArrowsToSpawn value is needed.
You could try adding sprites with a while loop, instead of using a for loop, just continue creating sprites until the calculated world position for the sprite will no longer be visible to the camera. Check to see if a point will be visible in camera by using the technique Jessy provides in this link:
http://forum.unity3d.com/threads/point-in-camera-view.72523/
I think your screenHeightInWorld is really a screenTopInWorld, a point can be anywhere in the space.
You need the relative screen height in world coordinate.
Which is actially the half of the camera frustum size if you use ortographic projection, as you think of it.
float screenHeightInWorld = Camera.main.orthographicSize / 2.0f;
I did not read the rest, but is probably fine, up to you how you implement this.
I'd simply create an arrow method, something like bool SpawnArrowAboveIfFits(), which can call itself iteratively on the new instances.

Elliptical movement of a rigidbody (as in whale trail game) by applying force in unity using c#?

I want to move a rigid body in an elliptical movement like the player movement "whale trail" game.What I did is:
Created a Cube called "Player" with scale(1.5,0.5,0.1)
Created another small cube called Point with scale(0.1,0.1,0.1) and positioned same as Player but 0.5 more in x (So that now the player looks like a 2D rectangle and a point on it little right to the centre of the rectangle).
Then I created a fixed joint between both bodies
Now I applied for on the player at the position of the Point as follows ,
float mfAngle = 0.0f;
void update()
{
mfAngle=transform.eulerAngles.z;
mfAngle=mfAngle%360;
if(mfAngle>=0 && mfAngle<90)
{
mfXforce=-0.1f;
mfYforce=0.1f;
}
if(mfAngle>=90 && mfAngle<180)
{
mfXforce=-0.1f;
mfYforce=0.1f;
}
if(mfAngle>=180 && mfAngle<270)
{
mfXforce=-0.1f;
mfYforce=-0.1f;
}
if(mfAngle>=270 && mfAngle<360)
{
mfXforce=0.1f;
mfYforce=-0.1f;
}
Debug.Log("Angle ="+mfAngle+"X = "+mfXforce+"Y = "+mfYforce);
Vector3 pointPos=_goPointObject.transform.position;
transform.rigidbody.AddForceAtPosition(new Vector3(mfXforce,mfYforce,0),pointPos);
}
But it doesn't works fine.I just moves upwards and the turns and moves in different direction.If anyone know how to move the rigid body in elliptical motion by applying force give me a solution.(I want to use it as like whale trail game u can see the video of the "loop movement" in this http://www.youtube.com/watch?v=wwr6c2Ws1yI video).Thanks in advance.
I had found the solution by myself.To achieve that elliptical movement u have to create two bodies and connect them with joint by placing it horizontally next to each other.Then u have to apply force in x direction constantly and in Y direction only when the Screen is be touched on the first body.
And its important to reduce the X speed when moving up then u will get that elliptical rotation.
It works fine for me.
Thanks,
Ashokkumar M