I'm trying to validate (and read roles from) a JWT Token. Sadly I can't use any adapter or auto configuration due to my overall application architecture.
It's no problem to decode the token like any other JWT Token, but I wonder if there is a library from Keycloak to archive this goal. (For example Just Parse the token to something like a KeycloakJWTToken and verify it by grabbing the secret from Keycloak Server or so)
Any easy-to-use client or so?
I'm using the Jose4J library:
https://bitbucket.org/b_c/jose4j/wiki/Home
Reading the claims inside a JWT token is straightforward:
import org.jose4j.jwt.JwtClaims;
import org.jose4j.jwt.consumer.JwtConsumer;
import org.jose4j.jwt.consumer.JwtConsumerBuilder;
public void parseJWT(String token) throws Exception {
JwtConsumer consumer = new JwtConsumerBuilder()
.setSkipAllValidators()
.setDisableRequireSignature()
.setSkipSignatureVerification()
.build();
JwtClaims claims = consumer.processToClaims(token);
System.out.println("* Parsed token: "+ claims.getRawJson() );
System.out.println("* Expiration date: " + new Date(claims.getExpirationTime().getValueInMillis()) );
}
More examples are available on GitHub:
https://github.com/pvliesdonk/jose4j/blob/master/src/test/java/org/jose4j/examples/ExamplesTest.java
Last remark: you do not need a key nor a secret to parse the JWT, but if needed, you can use the server (public) key to verify the token was signed by the keycloak server you are trusting.
The JWT website is listing all libraries for Token Signing/Verification:
https://jwt.io/#libraries-io
Keycloak access tokens are indeed JWT tokens. So, you can make full use of existing JWT libraries, including for validation as stated in the Keycloak official documentation:
If you need to manually validate access tokens issued by Keycloak you can invoke the Introspection Endpoint. The downside to this approach is that you have to make a network invocation to the Keycloak server. This can be slow and possibily overload the server if you have too many validation requests going on at the same time. Keycloak issued access tokens are JSON Web Tokens (JWT) digitally signed and encoded using JSON Web Signature (JWS). Because they are encoded in this way, this allows you to locally validate access tokens using the public key of the issuing realm. You can either hard code the realm’s public key in your validation code, or lookup and cache the public key using the certificate endpoint with the Key ID (KID) embedded within the JWS. Depending what language you code in, there are a multitude of third party libraries out there that can help you with JWS validation.
Besides, in Java EE, using the Keycloak Java adapter, the roles are typically mapped on the user Principal and i.e. allows isUserInRole(). That's one of the goals.
Also it is possible to cast the Principal from the SecurityContext as a KeycloakPrincipal, then obtain in turn a KeycloakSecurityContext from it. Using the KeycloakSecurityContext you have access to both ID and Access tokens (when applicable) and can read their properties, attributes and claims.
Note that it is also good practice, and simply useful, to use the Keycloak UI to "evaluate" your tokens. For instance, you can see the generated token in the Client Scopes tab (under Evaluate), as well as evaluate your policies and permissions in the Authorization tab of your Client(s) (under Evaluate).
Cf. https://www.keycloak.org/docs/latest/server_admin/#_client_scopes_evaluate
That's probably the best way to debug and test, while setting up your Client(s).
If you select a user in the Evaluate screen, the following example data is generated:
Generated Access Token (...)
Generated ID Token (...)
Generated User Info (...)
All examples are generated for the particular user and issued for the particular client, with the specified value of scope parameter. The examples include all of the claims and role mappings used.
Source: https://www.keycloak.org/docs/latest/server_admin/#generating-example-tokens-and-user-info
If I get a JWT and I can decode the payload, how is that secure? Couldn't I just grab the token out of the header, decode and change the user information in the payload, and send it back with the same correct encoded secret?
I know they must be secure, but I just would really like to understand the technologies. What am I missing?
JWTs can be either signed, encrypted or both. If a token is signed, but not encrypted, everyone can read its contents, but when you don't know the private key, you can't change it. Otherwise, the receiver will notice that the signature won't match anymore.
Answer to your comment: I'm not sure if I understand your comment the right way. Just to be sure: do you know and understand digital signatures? I'll just briefly explain one variant (HMAC, which is symmetrical, but there are many others).
Let's assume Alice wants to send a JWT to Bob. They both know some shared secret. Mallory doesn't know that secret, but wants to interfere and change the JWT. To prevent that, Alice calculates Hash(payload + secret) and appends this as signature.
When receiving the message, Bob can also calculate Hash(payload + secret) to check whether the signature matches.
If however, Mallory changes something in the content, she isn't able to calculate the matching signature (which would be Hash(newContent + secret)). She doesn't know the secret and has no way of finding it out.
This means if she changes something, the signature won't match anymore, and Bob will simply not accept the JWT anymore.
Let's suppose, I send another person the message {"id":1} and sign it with Hash(content + secret). (+ is just concatenation here). I use the SHA256 Hash function, and the signature I get is: 330e7b0775561c6e95797d4dd306a150046e239986f0a1373230fda0235bda8c. Now it's your turn: play the role of Mallory and try to sign the message {"id":2}. You can't because you don't know which secret I used. If I suppose that the recipient knows the secret, he CAN calculate the signature of any message and check if it's correct.
You can go to jwt.io, paste your token and read the contents. This is jarring for a lot of people initially.
The short answer is that JWT doesn't concern itself with encryption. It cares about validation. That is to say, it can always get the answer for "Have the contents of this token been manipulated"? This means user manipulation of the JWT token is futile because the server will know and disregard the token. The server adds a signature based on the payload when issuing a token to the client. Later on it verifies the payload and matching signature.
The logical question is what is the motivation for not concerning itself with encrypted contents?
The simplest reason is because it assumes this is a solved problem for the most part. If dealing with a client like the web browser for example, you can store the JWT tokens in a cookie that is secure (is not transmitted via HTTP, only via HTTPS) and httpOnly (can't be read by Javascript) and talks to the server over an encrypted channel (HTTPS). Once you know you have a secure channel between the server and client you can securely exchange JWT or whatever else you want.
This keeps thing simple. A simple implementation makes adoption easier but it also lets each layer do what it does best (let HTTPS handle encryption).
JWT isn't meant to store sensitive data. Once the server receives the JWT token and validates it, it is free to lookup the user ID in its own database for additional information for that user (like permissions, postal address, etc). This keeps JWT small in size and avoids inadvertent information leakage because everyone knows not to keep sensitive data in JWT.
It's not too different from how cookies themselves work. Cookies often contain unencrypted payloads. If you are using HTTPS then everything is good. If you aren't then it's advisable to encrypt sensitive cookies themselves. Not doing so will mean that a man-in-the-middle attack is possible--a proxy server or ISP reads the cookies and then replays them later on pretending to be you. For similar reasons, JWT should always be exchanged over a secure layer like HTTPS.
Let's discuss from the very beginning:
JWT is a very modern, simple and secure approach which extends for Json Web Tokens. Json Web Tokens are a stateless solution for authentication. So there is no need to store any session state on the server, which of course is perfect for restful APIs.
Restful APIs should always be stateless, and the most widely used alternative to authentication with JWTs is to just store the user's log-in state on the server using sessions. But then of course does not follow the principle that says that restful APIs should be stateless and that's why solutions like JWT became popular and effective.
So now let's know how authentication actually works with Json Web Tokens. Assuming we already have a registered user in our database. So the user's client starts by making a post request with the username and the password, the application then checks if the user exists and if the password is correct, then the application will generate a unique Json Web Token for only that user.
The token is created using a secret string that is stored on a server. Next, the server then sends that JWT back to the client which will store it either in a cookie or in local storage.
Just like this, the user is authenticated and basically logged into our application without leaving any state on the server.
So the server does in fact not know which user is actually logged in, but of course, the user knows that he's logged in because he has a valid Json Web Token which is a bit like a passport to access protected parts of the application.
So again, just to make sure you got the idea. A user is logged in as soon as he gets back his unique valid Json Web Token which is not saved anywhere on the server. And so this process is therefore completely stateless.
Then, each time a user wants to access a protected route like his user profile data, for example. He sends his Json Web Token along with a request, so it's a bit like showing his passport to get access to that route.
Once the request hits the server, our app will then verify if the Json Web Token is actually valid and if the user is really who he says he is, well then the requested data will be sent to the client and if not, then there will be an error telling the user that he's not allowed to access that resource.
All this communication must happen over https, so secure encrypted Http in order to prevent that anyone can get access to passwords or Json Web Tokens. Only then we have a really secure system.
So a Json Web Token looks like left part of this screenshot which was taken from the JWT debugger at jwt.io. So essentially, it's an encoding string made up of three parts. The header, the payload and the signature Now the header is just some metadata about the token itself and the payload is the data that we can encode into the token, any data really that we want. So the more data we want to encode here the bigger the JWT. Anyway, these two parts are just plain text that will get encoded, but not encrypted.
So anyone will be able to decode them and to read them, we cannot store any sensitive data in here. But that's not a problem at all because in the third part, so in the signature, is where things really get interesting. The signature is created using the header, the payload, and the secret that is saved on the server.
And this whole process is then called signing the Json Web Token. The signing algorithm takes the header, the payload, and the secret to create a unique signature. So only this data plus the secret can create this signature, all right?
Then together with the header and the payload, these signature forms the JWT,
which then gets sent to the client.
Once the server receives a JWT to grant access to a protected route, it needs to verify it in order to determine if the user really is who he claims to be. In other words, it will verify if no one changed the header and the payload data of the token. So again, this verification step will check if no third party actually altered either the header or the payload of the Json Web Token.
So, how does this verification actually work? Well, it is actually quite straightforward. Once the JWT is received, the verification will take its header and payload, and together with the secret that is still saved on the server, basically create a test signature.
But the original signature that was generated when the JWT was first created is still in the token, right? And that's the key to this verification. Because now all we have to do is to compare the test signature with the original signature.
And if the test signature is the same as the original signature, then it means that the payload and the header have not been modified.
Because if they had been modified, then the test signature would have to be different. Therefore in this case where there has been no alteration of the data, we can then authenticate the user. And of course, if the two signatures
are actually different, well, then it means that someone tampered with the data.
Usually by trying to change the payload. But that third party manipulating the payload does of course not have access to the secret, so they cannot sign the JWT.
So the original signature will never correspond to the manipulated data.
And therefore, the verification will always fail in this case. And that's the key to making this whole system work. It's the magic that makes JWT so simple,
but also extremely powerful.
The contents in a json web token (JWT) are not inherently secure, but there is a built-in feature for verifying token authenticity. A JWT is three hashes separated by periods. The third is the signature. In a public/private key system, the issuer signs the token signature with a private key which can only be verified by its corresponding public key.
It is important to understand the distinction between issuer and verifier. The recipient of the token is responsible for verifying it.
There are two critical steps in using JWT securely in a web application: 1) send them over an encrypted channel, and 2) verify the signature immediately upon receiving it. The asymmetric nature of public key cryptography makes JWT signature verification possible. A public key verifies a JWT was signed by its matching private key. No other combination of keys can do this verification, thus preventing impersonation attempts. Follow these two steps and we can guarantee with mathematical certainty the authenticity of a JWT.
More reading: How does a public key verify a signature?
I would explain this with an example.
Say I borrowed $10 from you, then I gave you an IOU with my signature on it. I will pay you back whenever you or someone else bring this IOU back to me, I will check the signature to make sure that is mine.
I can't make sure you don't show the content of this IOU to anyone or even give it to a third person, all I care is that this IOU is signed by me, when someone shows this IOU to me and ask me to pay it.
The way how JWT works is quite the same, the server can only make sure that the token received was issued by itself.
You need other measures to make it secure, like encryption in transfer with HTTPS, making sure that the local storage storing the token is secured, setting up origins.
Ref - JWT Structure and Security
It is important to note that JWT are used for authorization and not authentication.
So a JWT will be created for you only after you have been authenticated by the server by may be specifying the credentials. Once JWT has been created for all future interactions with server JWT can be used. So JWT tells that server that this user has been authenticated, let him access the particular resource if he has the role.
Information in the payload of the JWT is visible to everyone. There can be a "Man in the Middle" attack and the contents of the JWT can be changed. So we should not pass any sensitive information like passwords in the payload. We can encrypt the payload data if we want to make it more secure. If Payload is tampered with server will recognize it.
So suppose a user has been authenticated and provided with a JWT. Generated JWT has a claim specifying role of Admin. Also the Signature is generated with
This JWT is now tampered with and suppose the
role is changed to Super Admin
Then when the server receives this token it will again generate the signature using the secret key(which only the server has) and the payload. It will not match the signature
in the JWT. So the server will know that the JWT has been tampered with.
Only JWT's privateKey, which is on your server will decrypt the encrypted JWT. Those who know the privateKey will be able to decrypt the encrypted JWT.
Hide the privateKey in a secure location in your server and never tell anyone the privateKey.
I am not a cryptography specialist and hence (I hope) my answer can help somebody who is neither.
There are two possible ways of using cryptography in programming:
Signing / verifying
Encryption / decryption
We use Signing when we want to ensure that data comes from a trusted source.
We use Encryption when we want to protect the data.
Signing / verifying uses asymmetrical algorithms i.e. we sign with one key (private) and the data receiver uses the other (public) key to verify.
A symmetric algorithm uses the same key to encrypt and decrypt data.
The encryption can be done using both symmetric and asymmetric algorithms.
relatively simple article on subject
The above is common knowledge below is my opinion.
When JWT is used for simple client-to-server identification there is no need for signing or asymmetric encryption. JWT can be encrypted with AES which is fast and supersecure. If the server can decrypt it, it means the server is the one who encrypted it.
Summary: non-encrypted JWT is not secure. Symmetric encryption can be used instead of signing in case no third party is involved.
I'm working on an ionic app which start with a login system, I already create a basic authentication system which fetch in the database for the username and the password if exist I get as output the ID of the user and his full name and I store them in the local storage but I can see that this way isn't secure enough so how I can build a strong and a secure authentication system using ionic 4v, I found something like using a token and store but i didn't get the idea
Note : for the Backend there is an other team works on it they use JEE with SpringBoot Framework
I would suggest going with the JSON Web Token (JWT) approach. You can find more information on it here. You basically want to create an API endpoint that consumes the users username and password then validates it and if it is successful it returns a JWT.
JSON Web Token (JWT) is an open standard (RFC 7519) that defines a
compact and self-contained way for securely transmitting information
between parties as a JSON object. This information can be verified and
trusted because it is digitally signed. JWTs can be signed using a
secret (with the HMAC algorithm) or a public/private key pair using
RSA or ECDSA.
You might also want to include refresh tokens so that you can get a new JWT when the current one expires as putting a long expiry on a JWT is not recommended.
You will need to provide more information on what programming language your backend/API is in so that we can assist you with the correct implementation thereof.
I am developing a REST application with its own authentication and authorization mechanism. I want to use JSON Web Tokens for authentication. Is the following a valid and safe implementation?
A REST API will be developed to accept username and password and do the authentication. The HTTP method to be used is POST so that there is no caching. Also, there will be SSL for security at the time of transit
At the time of authentication, two JWTs will be created - access token and refresh token. Refresh token will have longer validity. Both the tokens will be written in cookies, so that they are sent in every subsequent requests
On every REST API call, the tokens will be retrieved from the HTTP header. If the access token is not expired, check the privileges of the user and allow access accordingly. If the access token is expired but the refresh token is valid, recreate new access token and refresh token with new expiry dates (do all necessary checks to ensure that the user rights to authenticate are not revoked) and sent back through Cookies
Provide a logout REST API that will reset the cookie and hence subsequent API calls will be rejected until login is done.
My understanding of refresh token here is:
Due to the presence of refresh token, we can keep shorter validity period for access token and check frequently (at the expiry of access token) that the user is still authorized to login.
Please correct me if I am wrong.
A REST API will be developed to accept username and password and do
the authentication. The HTTP method to be used is POST so that there
is no caching. Also, there will be SSL for security at the time of
transit
This is the way most do it, so you're good here.
At the time of authentication, two JWTs will be created - access token
and refresh token. Refresh token will have longer validity. Both the
tokens will be written in cookies so that they are sent in every
subsequent requests
Storing the tokens in cookies I not dangerous in itself, but if you somehow get you JWT module on your server to read them from there you vulnerable to CSRF attacks where any webpage can trigger a users browser to send a form + you sites cookie to your server unless you use CSRF tokens. So generally they are stored in localStorage and "manually" added to request headers every time.
On every REST API call, the tokens will be retrieved from the HTTP
header. If the access token is not expired, check the privileges of
the user and allow access accordingly. If the access token is expired
but the refresh token is valid, recreate new access token and refresh
token with new expiry dates (do all necessary checks to ensure that
the user rights to authenticate are not revoked) and sent back through
Cookies
Apart from the cookie dangers, it seems safe.
Provide a logout REST API that will reset the cookie and hence
subsequent API calls will be rejected until login is done.
You don't even need to make an API call, you can simply just purge the cookies or the localStorage object and make sure your client doesn't break on missing tokens.
The standard for the express-jwt module expects the tokens to be in its own "Authorization: Bearer [Token]" header, which I would strongly recommend over cookies. The localStorage API is available all the way back to IE8 so you should be good.
Edit:
First, it's important to know the difference between XSS and CSRF attacks since they're often believed to be the same thing.
XSS is when users get unsafe JS running on your domain in other users browsers when that happens neither JWT in localStorage or sessions and JWT in cookies are safe. With httpOnly flag on cookies, you can't directly access them, but the browser will still send them with AJAX requests to your server. If this happens you generally out of luck. To prevent this, make sure to escape all user input if it's sent to the browser.
If you load 3rd party JS with script tags or iframes this might compromise localStorage unless you are careful, but I haven't worked enough with this to help you here.
CSRF is only when other domains are trying to send normal HTML forms to your server by getting the browser to send cookies automatically. Frameworks prevent this by inserting unique random strings as hidden fields and checking them again when it's submitted. JWT's in localStorage is safe from this since each domain gets its own separate localStorage area.
But ultimately all this depends on if your service will be using one single domain, in which case httpOnly cookies will be plenty secure and easier to set up, but if you wanna spread your service out on multiple domains like api.domain.com + app.domain.com or add a native app you're forced to store you're JWTs in localStorage or some other native storage area.
Hope this helps!
I asked this question two years back and also accepted the answer. However, based on my experience and study in the last two years, I'd like to answer this just in case someone stumbles on this thread with the same question.
The approach mentioned in the question is similar to the "Resource Owner Password Credentials" grant type of OAuth 2.0. However, I think it is better to use the "Authorization Code Grant" type instead and Cookie to store the tokens instead of browser localStorage or sessionStorage. I have detailed my reasons, implementation points, security considerations and references in this StackOverlow answer.
Like OP I been using resource owner password grant.
I learned so much from Saptarshi Basu's other answer in a different post I think anyone looking into OAuth Code Flow should take a look at it, it has outlined a very solid approach to auth SPA and resource servers. It primarily relies on your backend(resource server) to handle authentication with the auth provider as a private client.
However, I will just add that people looking at implementing authentication with SPA should also consider OAuth Code Flow with PKCE. The main goal of PKCE is to allow public client such as SPA to authenticate directly with auth provider. All PKCE adds, is that when a SPA app initiates authentication, a hashed value is sent to the auth provider when the user is authenticated. And after user authenticate with the authorization provider, it redirects the user back to SPA with that hashed value as well as authorization code. Now, for the next part where the SPA calls auth provider to exchange code for tokens, instead of providing client secret, it has to provide the key that was originally used to create the hashed value. This mechanism guarantees the code cannot be used by someone who intercepted the code, and the SPA doesnt need to store a client secret like a server-side app does.
Now the only thing I'm not certain at this point is which is technically more secure, server-side authentication using standard Code Flow without PKCE or SPA authenticating directly using PKCE? Most resources I could find online currently describes and recommends the latter . However I feel that letting a private server side client handle authentication (as Saptarshi Basu described) might still be more secure. I would love to hear his opinion on this as well.
My understanding of refresh token here is:
Due to the presence of refresh token, we can keep shorter validity period for access token and check frequently (at the expiry of access token) that the user is still authorized to login.
Please correct me if I am wrong.
Assuming you're talking about using JWT as Bearer-token in OAuth (and I would strongly advice to follow the OAuth 2.0 protocol), that's right.
With an additional auth-time (timestamp of authentication) claim in your JWT, you could even drop the second token and sent your access- as a refresh-token (the auth-server could then issue a new access-token if token is valid & auth-time within allowed range)... but sure, it's also good to follow the standard ;)
Anyway, there are certain additional aspects (that tend to get difficult or are even against the fundamental ideas of JWT) you should consider before using JWTs as refresh-token, as this basically means you introduce long-living JWT:
do you need to have something like forced user logout/ token revocation by subject (e.g. if user got identified as fraudulent)?
do you need to have something like revocation of a specific token (e.g. if a user looses a device)?
...
Dependent on your use-case you should consider all the possible implications, long-living tokens have as they usually require you to introduce some kind of state on your server-side (e.g. to allow revocation/ blacklisting). Keep in mind the beauty and security of the JWT concept lies within JWTs being short-lived.
My experience with token-based authentication systems has always involved a token-exchange system. The application in which we want to authenticate the user receives a token (via request), and then securely transmits this token to the authenticating system's token exchange service, which validates the token and returns user information to the application.
I've recently come across ZenDesk's implementation of SSO, which uses JWT but no token exchange/validation step.
https://support.zendesk.com/hc/en-us/articles/203663816-Setting-up-single-sign-on-with-JWT-JSON-Web-Token-
Example PHP implementation here: https://github.com/zendesk/zendesk_jwt_sso_examples/blob/master/php_jwt.php
Basically, encoded user information is passed through a URL along with an HMAC to sign the request. The ZenDesk end will decode, validate the HMAC is valid (using a shared key), and immediately authenticate the user based on the request's user information. There is no callback to the system that generated the token to ensure it is valid.
My question is: If someone were to capture the request, and they decoded it to obtain the user information and the HMAC, couldn't they just send this up to a server farm to start iterating over secret keys until they figure out what it is (ie: making the HMACs match)? And then once you have the key, you could authenticate to ZenDesk as the CEO and make ridiculous requests?
Hopefully I'm missing something, as this approach to SSO is the simplest I've ever seen.
You are exactly right. The thing that you are missing is that - assuming the keyed hash used for the HMAC is secure and that the key is strongly random and long enough - it will be infeasible to brute force the key.