I need to plot a cell array with the following format in Matlab:
{[vector1], [vector2], ...}
Into a 2D graph with the index of the vector as the y and the vector as the x
([vector1], 1), ([vector2], 2), ...
Here's a simple option:
% some arbitrary data:
CellData = {rand(10,1)*50,rand(10,1)*50,rand(10,1)*50};
% Define x and y:
x = cell2mat(CellData);
y = ones(size(x,1),1)*(1:size(x,2));
% plot:
plot(x,y,'o')
ylim([0 size(x,2)+1])
so you plot each vector of x on a separate y value:
It will work as long as your cell array is just a list of vectors.
EDIT: For non equal vectors
You'll have to use a for loop with hold:
% some arbitrary data:
CellData = {rand(5,1)*50,rand(6,1)*50,rand(7,1)*50,rand(8,1)*50,rand(9,1)*50};
figure;
hold on
for ii = 1:length(CellData)
x = CellData{ii};
y = ones(size(x,1),1)*ii;
plot(x,y,'o')
end
ylim([0 ii+1])
hold off
Hope this answers your question ;)
Here's my (brute force) interpretation of your request. There are likely more elegant solutions.
This code generates a dot plot that puts the values from the vectors at each index on the y axis—bottom to top. It can accommodate vectors of different lengths. You could make it a dot plot of vector distributions, but you might need to add some jitter to the x value, if multiple occurrences of identical or nearly identical values are possible.
% random data--three vectors from range 1:10 of different lengths
for i = 1:3
dataVals{i} = randi(10,randi(10,1),1);
end
dotSize = 14;
% plot the first vector with dots and increase the dot size
% I happen to like filled circles for this, and this is how I do it.
h = plot(dataVals{1}, ones(length(dataVals{1}), 1),'.r');
set(h,'markers', dotSize);
ax = gca;
axis([0 11 0 4]); % set axis limits
% set the Y axis labels to whole numbers
ax.YTickLabel = {'','','1','','2','','3','','',}';
hold on;
% plot the rest of the vectors
for i=2:length(dataVals)
h = plot(dataVals{i}, ones(length(dataVals{i}),1)*i,'.r');
set(h, 'markers', dotSize);
end
hold off
Without any data this is the best I can come up with for what you want:
yourCell = {[0,0,0],[1,1,1],[2,2,2]}; % 1x3 cell
figure;
plot(cell2mat(yourCell));
ylabel('Vector Values');
xlabel('Index of Vector');
It makes a plot like this:
Hope this helps.
Related
I'm trying to fill an area between two curves with respect to a function which depends on the values of the curves.
Here is the code of what I've managed to do so far
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
N=[n_vec,fliplr(n_vec)];
X=[x_vec,fliplr(y_vec)];
figure(1)
subplot(2,1,1)
hold on
plot(n_vec,x_vec,n_vec,y_vec)
hp = patch(N,X,'b')
plot([n_vec(i) n_vec(i)],[x_vec(i),y_vec(i)],'linewidth',5)
xlabel('n'); ylabel('x')
subplot(2,1,2)
xx = linspace(y_vec(i),x_vec(i),100);
plot(xx,cc(xx,y_vec(i),x_vec(i)))
xlabel('x'); ylabel('c(x)')
This code produces the following graph
The color code which I've added represent the color coding that each line (along the y axis at a point on the x axis) from the area between the two curves should be.
Overall, the entire area should be filled with a gradient color which depends on the values of the curves.
I've assisted the following previous questions but could not resolve a solution
MATLAB fill area between lines
Patch circle by a color gradient
Filling between two curves, according to a colormap given by a function MATLAB
NOTE: there is no importance to the functional form of the curves, I would prefer an answer which refers to two general arrays which consist the curves.
The surf plot method
The same as the scatter plot method, i.e. generate a point grid.
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px = linspace(min(n_vec), max(n_vec), resolution(1));
py = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px, py);
Generate a logical array indicating whether the points are inside the polygon, but no need to extract the points:
in = inpolygon(px, py, N, X);
Generate Z. The value of Z indicates the color to use for the surface plot. Hence, it is generated using the your function cc.
pz = 1./(1+(exp(-py_)/(exp(-y_vec(i))-exp(-x_vec(i)))));
pz = repmat(pz',1,resolution(2));
Set Z values for points outside the area of interest to NaN so MATLAB won't plot them.
pz(~in) = nan;
Generate a bounded colourmap (delete if you want to use full colour range)
% generate colormap
c = jet(100);
[s,l] = bounds(pz,'all');
s = round(s*100);
l = round(l*100);
if s ~= 0
c(1:s,:) = [];
end
if l ~= 100
c(l:100,:) = [];
end
Finally, plot.
figure;
colormap(jet)
surf(px,py,pz,'edgecolor','none');
view(2) % x-y view
Feel free to turn the image arround to see how it looks like in the Z-dimention - beautiful :)
Full code to test:
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
% generate grid
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px_ = linspace(min(n_vec), max(n_vec), resolution(1));
py_ = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px_, py_);
% extract points
in = inpolygon(px, py, N, X);
% generate z
pz = 1./(1+(exp(-py_)/(exp(-y_vec(i))-exp(-x_vec(i)))));
pz = repmat(pz',1,resolution(2));
pz(~in) = nan;
% generate colormap
c = jet(100);
[s,l] = bounds(pz,'all');
s = round(s*100);
l = round(l*100);
if s ~= 0
c(1:s,:) = [];
end
if l ~= 100
c(l:100,:) = [];
end
% plot
figure;
colormap(c)
surf(px,py,pz,'edgecolor','none');
view(2)
You can use imagesc and meshgrids. See comments in the code to understand what's going on.
Downsample your data
% your initial upper and lower boundaries
n_vec_long = linspace(2,10,1000000);
f_ub_vec_long = linspace(2, 10, length(n_vec_long));
f_lb_vec_long = abs(sin(n_vec_long));
% downsample
n_vec = linspace(n_vec_long(1), n_vec_long(end), 1000); % for example, only 1000 points
% get upper and lower boundary values for n_vec
f_ub_vec = interp1(n_vec_long, f_ub_vec_long, n_vec);
f_lb_vec = interp1(n_vec_long, f_lb_vec_long, n_vec);
% x_vec for the color function
x_vec = 0:0.01:10;
Plot the data
% create a 2D matrix with N and X position
[N, X] = meshgrid(n_vec, x_vec);
% evaluate the upper and lower boundary functions at n_vec
% can be any function at n you want (not tested for crossing boundaries though...)
f_ub_vec = linspace(2, 10, length(n_vec));
f_lb_vec = abs(sin(n_vec));
% make these row vectors into matrices, to create a boolean mask
F_UB = repmat(f_ub_vec, [size(N, 1) 1]);
F_LB = repmat(f_lb_vec, [size(N, 1) 1]);
% create a mask based on the upper and lower boundary functions
mask = true(size(N));
mask(X > F_UB | X < F_LB) = false;
% create data matrix
Z = NaN(size(N));
% create function that evaluates the color profile for each defined value
% in the vectors with the lower and upper bounds
zc = #(X, ub, lb) 1 ./ (1 + (exp(-X) ./ (exp(-ub) - exp(-lb))));
CData = zc(X, f_lb_vec, f_ub_vec); % create the c(x) at all X
% put the CData in Z, but only between the lower and upper bound.
Z(mask) = CData(mask);
% normalize Z along 1st dim
Z = normalize(Z, 1, 'range'); % get all values between 0 and 1 for colorbar
% draw a figure!
figure(1); clf;
ax = axes; % create some axes
sc = imagesc(ax, n_vec, x_vec, Z); % plot the data
ax.YDir = 'normal' % set the YDir to normal again, imagesc reverses it by default;
xlabel('n')
ylabel('x')
This already looks kinda like what you want, but let's get rid of the blue area outside the boundaries. This can be done by creating an 'alpha mask', i.e. set the alpha value for all pixels outside the previously defined mask to 0:
figure(2); clf;
ax = axes; % create some axes
hold on;
sc = imagesc(ax, n_vec, x_vec, Z); % plot the data
ax.YDir = 'normal' % set the YDir to normal again, imagesc reverses it by default;
% set a colormap
colormap(flip(hsv(100)))
% set alpha for points outside mask
Calpha = ones(size(N));
Calpha(~mask) = 0;
sc.AlphaData = Calpha;
% plot the other lines
plot(n_vec, f_ub_vec, 'k', n_vec, f_lb_vec, 'k' ,'linewidth', 1)
% set axis limits
xlim([min(n_vec), max(n_vec)])
ylim([min(x_vec), max(x_vec)])
there is no importance to the functional form of the curves, I would prefer an answer which refers to two general arrays which consist the curves.
It is difficult to achieve this using patch.
However, you may use scatter plots to "fill" the area with coloured dots. Alternatively, and probably better, use surf plot and generate z coordinates using your cc function (See my seperate solution).
The scatter plot method
First, make a grid of points (resolution 500*500) inside the rectangular space bounding the two curves.
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px = linspace(min(n_vec), max(n_vec), resolution(1));
py = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px, py);
figure;
scatter(px(:), py(:), 1, 'r');
The not-interesting figure of the point grid:
Next, extract the points inside the polygon defined by the two curves.
in = inpolygon(px, py, N, X);
px = px(in);
py = py(in);
hold on;
scatter(px, py, 1, 'k');
Black points are inside the area:
Finally, create color and plot the nice looking gradient colour figure.
% create color for the points
cid = 1./(1+(exp(-py)/(exp(-y_vec(i))-exp(-x_vec(i)))));
c = jet(101);
c = c(round(cid*100)+1,:); % +1 to avoid zero indexing
% plot
figure;
scatter(px,py,16,c,'filled','s'); % use size 16, filled square markers.
Note that you may need a fairly dense grid of points to make sure the white background won't show up. You may also change the point size to a bigger value (won't impact performance).
Of cause, you may use patch to replace scatter but you will need to work out the vertices and face ids, then you may patch each faces separately with patch('Faces',F,'Vertices',V). Using patch this way may impact performance.
Complete code to test:
i=50;
cc = #(xx,x,y) 1./(1+(exp(-xx)/(exp(-x)-exp(-y))));
n_vec = 2:0.1:10;
x_vec = linspace(2,10,length(n_vec));
y_vec = abs(sin(n_vec));
% generate point grid
y = [x_vec(:); y_vec(:)];
resolution = [500,500];
px_ = linspace(min(n_vec), max(n_vec), resolution(1));
py_ = linspace(min(y), max(y), resolution(2));
[px, py] = meshgrid(px_, py_);
% extract points
in = inpolygon(px, py, N, X);
px = px(in);
py = py(in);
% generate color
cid = 1./(1+(exp(-py)/(exp(-y_vec(i))-exp(-x_vec(i)))));
c = jet(101);
c = c(round(cid*100)+1,:); % +1 to avoid zero indexing
% plot
figure;
scatter(px,py,16,c,'filled','s');
I created two scatter plots and then used lsline to add regression lines for each plot. I used this code:
for i=1:2
x = ..;
y = ..;
scatter(x, y, 50, 'MarkerFaceColor',myColours(i, :));
end
h_lines = lsline;
However, the darker line extends far beyond the last data point in that scatter plot (which is at around x=0.3):
lsline doesn't seem to have properties that allow its horizontal range to be set. Is there a workaround to set this separately for the two lines, in Matlab 2016a?
For a single data set
This is a workaround rather than a solution. lsline internally calls refline, which plots a line filling the axis as given by their current limits (xlim and ylim). So you can change those limits to the extent you want for the line, call lsline, and then restore the limits.
Example:
x = randn(1,100);
y = 2*x + randn(1,100); % random, correlated data
plot(x, y, '.') % scatter plot
xlim([-1.5 1.5]) % desired limit for line
lsline % plot line
xlim auto % restore axis limit
For several data sets
In this case you can apply the same procedure for each data set sequentially, but you need to keep only one data set visible when you call lsline; otherwise when you call it to create the second line it will also create a new version of the first (with the wrong range).
Example:
x = randn(1,100); y = 2*x + randn(1,100); % random, correlated data
h = plot(x, y, 'b.'); % scatter plot
axis([min(x) max(x) min(y) max(y)]) % desired limit for line
lsline % plot line
xlim auto % restore axis limit
hold on
x = 2*randn(1,100) - 5; y = 1.2*x + randn(1,100) + 6; % random, correlated data
plot(x, y, 'r.') % scatter plot
axis([min(x) max(x) min(y) max(y)]) % desired limit for line
set(h, 'HandleVisibility', 'off'); % hide previous plot
lsline % plot line
set(h, 'HandleVisibility', 'on'); % restore visibility
xlim auto % restore axis limit
Yet another solution: implement your own hsline. It's easy!
In MATLAB, doing a least squares fit of a straight line is trivial. Given column vectors x and y with N elements, b = [ones(N,1),x] \ y; are the parameters to the best fit line. [1,x1;1,x2]*b are the y locations of two points along the line with x-coordinates x1 and x2. Thus you can write (following Luis' example, and getting the exact same output):
N = 100;
x = randn(N,1); y = 2*x + randn(N,1); % random, correlated data
h = plot(x, y, 'b.'); % scatter plot
hold on
b = [ones(N,1),x] \ y;
x = [min(x);max(x)];
plot(x,[ones(2,1),x] * b, 'b-')
x = 2*randn(N,1) - 5; y = 1.2*x + randn(N,1) + 6; % random, correlated data
plot(x, y, 'r.') % scatter plot
b = [ones(N,1),x] \ y;
x = [min(x);max(x)];
plot(x,[ones(2,1),x] * b, 'r-')
You can get the points that define the line using
h_lines =lsline;
h_lines(ii).XData and h_lines(ii).YData will contain 2 points that define the lines for each ii=1,2 line. Use those to create en equation of a line, and plot the line in the range you want.
Can anyone explain the two lines of code highlighted below which use repmat? This is taken directly from the MathWorks documentation for learning data analysis:
bin_counts = hist(c3); % Histogram bin counts
N = max(bin_counts); % Maximum bin count
mu3 = mean(c3); % Data mean
sigma3 = std(c3); % Data standard deviation
hist(c3) % Plot histogram
hold on
plot([mu3 mu3],[0 N],'r','LineWidth',2) % Mean
% --------------------------------------------------------------
X = repmat(mu3+(1:2)*sigma3,2,1); % WHAT IS THIS?
Y = repmat([0;N],1,2); % WHY IS THIS NECESSARY?
% --------------------------------------------------------------
plot(X,Y,'g','LineWidth',2) % Standard deviations
legend('Data','Mean','Stds')
hold off
Could anyone explain the X = repmat(...) line to me? I know it will be plotted for the 1 and 2 standard deviation lines.
Also, I tried commenting out the Y = ... line, and the plot looks the exact same, so what is the purpose of this line?
Thanks
Lets break the expression into multiple statements
X = repmat(mu3+(1:2)*sigma3,2,1);
is equivalent to
% First create a row vector containing one and two standard deviations from the mean.
% This is equivalent to xvals = [mu3+1*sigma3, mu3+2*sigma3];
xval = mu3 + (1:2)*sigma3;
% Repeat the matrix twice in the vertical dimension. We want to plot two vertical
% lines so the first and second point should be equal so we just use repmat to repeat them.
% This is equivalent to
% X = [xvals;
% xvals];
X = repmat(xval,2,1);
% To help understand how repmat works, if we had X = repmat(xval,3,2) we would get
% X = [xval, xval;
% xval, xval;
% xval, xval];
The logic is similar for the Y matrix except it repeats in the column direction. Together you end up with
X = [mu3+1*sigma3, mu3+2*sigma3;
mu3+1*sigma3, mu3+2*sigma3];
Y = [0, 0;
N, N];
When plot is called it plots one line per column of the X and Y matrices.
plot(X,Y,'g','LineWidth',2);
is equivalent to
plot([mu3+1*sigma3; mu3+1*sigma3], [0, N], 'g','LineWidth',2);
hold on;
plot([mu3+2*sigma3; mu3+2*sigma3], [0, N], 'g','LineWidth',2);
which plots two vertical lines, one and two standard deviations from the mean.
If you comment out Y then Y isn't defined. The reason the code still worked is probably that the previous value of Y was still stored in the workspace. If you run the command clear before running the script again you will find that the plot command will fail.
Anyway, I wish to plot two column vectors, filled with random numbers with no negative values in them, on a 2D plot(x and y).
The 'x-vector' I can leave as it is, but with the 'y vector', I wish to plot that any y values that is equal to zero as a different color(Say red) to the other positive non-zero values(Say blue).
Please try to keep solution relatively simple, if possible, as I myself am relatively new to MATLAB as well as to this site.
I'm not sure what you mean by 2D plot but I assuming you mean just a normal curve. Try this:
x = rand(10, 1);
y = rand(10, 1);
y([5 8]) = 0; %Force a couple of values to be 0 for visualisation
t = 1:10;
plot(t, x);
hold on
plot(t, y, 'g');
ind = y == 0; %Make a logical index that masks all the value where y is not 0
plot(t(ind), y(ind), 'r*');
Question: is it possible to illustrate an image on non-uniform axis?
Details:
I need to illustrate a multidimensional timeseries as an image. But the time grid of this timeseries is very non-uniform. Here is an example:
m = 10;
n = 3;
t = sort(rand(m, 1)); % non-uniform time
values = randn(m, n); % some random values
The figure, plot(t, values); handles it well.
But imagesc() converts t into uniform time between t(1) and t(end) according to documentation:
imagesc(x,y,C) displays C as an image and specifies the bounds of the
x- and y-axis with vectors x and y.
Therefore, the command:
figure, imagesc(t, 1 : n, values'); colorbar;
illustrates the image on uniform time grid.
Edit: It's possible to re-sample the timeseries with higher uniform resolution. But my timeseries is already very large.
There is pcolor function in MATLAB. This function does exactly what you're asking.
m = 10;
n = 3;
t = sort(rand(m, 1)); % non-uniform time
values = randn(m, n); % some random values
figure
plot(t, values);
figure
pcolor(t, 1 : n, values');
colorbar;
try uimagesc from the file exchange.
Solution
Try using surface for non-uniform spacing.
First, create a 3D xyz surface of the same size as your input data:
m = 10;
n = 3;
t = sort(rand(m, 1)); % non-uniform time
values = randn(m, n); % some random values
x = repmat(t,1,n);
y = repmat(1:n,m,1);
z = zeros(size(y));
Then, colormap your values. There is a nice tool posted to the mathworks file exchange, real2rgb, that can do this for you:
cdata = real2rgb(values); % Where size(cdata) = [m n 3]
Lastly, plot the surface. You can even get fancy and set the transparency.
surface(x,y,z,cdata,'EdgeColor','none','FaceColor','texturemap',...
'CDataMapping','direct');
alpha(0.3)