Is it possible to write custom conversion (casting) operator in swift? Especially I'm looking for enums conversion, ex:
enum MyEnum : Int {
case Case1 = 0
case Case2
func __conversion() -> String { // doesn't work since Swift 1.0
switch self {
case Case1: return "Case 1"
case Case2: return "Case 2"
}
}
}
let enumStr: String = MyEnum.Case1
Of course, I can convert to String with explicit method, but I would like to have implicit mechanism.
Disclaimer/TL;DR! This answer pertains to the technical question as to whether we can possibly implement implicit bridging mechanisms between different Swift types ourself. The answer is: for some cases, yes, but only in a limited sense and by means of "hacks": do not use this is production code!
Swift internal protocol abuse: we may implement implicit mechanisms to Obj-C objects (e.g. NSNumber, NSString ...)
As MartinR writes in his comment, custom conversion methods are not present for (native) Swift.
For the technical discussion we can, however, (ab)use the internal protocol _ObjectiveCBridgeable to allow implicit bridging from your enum to Obj-C objects, in this case e.g. NSString. For a more detailed Q&A of the subject of the internal protocol _ObjectiveCBridgeable, see
Is it possible to replicate Swifts automatic numeric value bridging to Foundation (NSNumber) for (U)Int8/16/32/64 types?
Before proceeding, I'll quote a disclaimer from my answer in thread above:
... note that _ObjectiveCBridgeable is an internal/hidden protocol
(_UnderScorePreFixedProtocol), so solutions based on it might break
without warning in upcoming Swift versions.
Example #1: implementing implicit bridging of your enum to NSString
First lets add a failable initializer to your enum, allowing (attempted) initialization by String instances:
import Foundation
enum MyEnum: Int {
case Case1 = 0
case Case2
init?(string: String) {
switch string {
case "Case 1": self = .Case1
case "Case 2": self = .Case2
default: return nil
}
}
}
Next up, let MyEnum conform to _ObjectiveCBridgeable, as described in more detail in the thread linked to above
extension MyEnum: _ObjectiveCBridgeable {
typealias _ObjectiveCType = NSString
static func _isBridgedToObjectiveC() -> Bool {
return true
}
static func _getObjectiveCType() -> Any.Type {
return _ObjectiveCType.self
}
func _bridgeToObjectiveC() -> _ObjectiveCType {
return NSString(string: "Case \(self.rawValue+1)")
}
static func _forceBridgeFromObjectiveC(source: _ObjectiveCType, inout result: MyEnum?) {
result = MyEnum(string: source as String)
}
static func _conditionallyBridgeFromObjectiveC(source: _ObjectiveCType, inout result: MyEnum?) -> Bool {
self._forceBridgeFromObjectiveC(source, result: &result)
return true
}
}
With the conformance above, we can now make use of implicit bridging from MyEnum instances to NSString
/* example usage */
var myCase: MyEnum = .Case1
var enumNSstr: NSString = myCase // MyEnum -> NSString, implicit
print(enumNSstr) // Case 1
enumNSstr = "Case 2"
// NSString -> MyEnum, by type conversion (castable)
myCase = (enumNSstr as MyEnum) ?? .Case1
print(myCase) // Case 2
Example #2: implementing implicit bridging of your enum to a custom Swift native type
We may even abuse the _ObjectiveCBridgeable protocol further, using its (deep backend) mechanisms to implement implicit bridging between two native Swift types, with the limitation that the type bridged to must be a reference type (specifically: instances of the type must be representable by AnyObject, hence the reference type limitation).
Let MyEnum be as defined above, but additionally, define a reference (class) type Foo, and conform MyEnum to _ObjectiveCBridgeable with the bridged to type, _ObjectiveCType being set to Foo.
class Foo {
var bar: String
init(bar: String) { self.bar = bar }
}
extension MyEnum: _ObjectiveCBridgeable {
typealias _ObjectiveCType = Foo
static func _isBridgedToObjectiveC() -> Bool {
return true
}
static func _getObjectiveCType() -> Any.Type {
return _ObjectiveCType.self
}
func _bridgeToObjectiveC() -> _ObjectiveCType {
return Foo(bar: "Case \(self.rawValue+1)")
}
static func _forceBridgeFromObjectiveC(source: _ObjectiveCType, inout result: MyEnum?) {
result = MyEnum(string: source.bar)
}
static func _conditionallyBridgeFromObjectiveC(source: _ObjectiveCType, inout result: MyEnum?) -> Bool {
self._forceBridgeFromObjectiveC(source, result: &result)
return true
}
}
We can now make use of implicit bridging from MyEnum instances to Foo
/* example usage */
var myCase: MyEnum = .Case1
var myFoo: Foo = myCase // MyEnum -> Foo, implicit
print(myFoo.bar) // Case 1
myFoo.bar = "Case 2"
// Foo -> MyEnum, by type conversion (castable)
myCase = (myFoo as? MyEnum) ?? .Case1
print(myCase) // Case 2
Finally note that you may, for any given type (say, MyEnum), naturally only implement implicit bridging to a single other (reference) type; since you can only conform to _ObjectiveCType once (for a unique type for the typealias _ObjectiveCType), otherwise yielding a compile time error for redundant protocol conformance.
The above is tested for Swift 2.2.
Related
I have a function that takes a String tag argument:
func findFooByTag(_ tag: String) -> Foo
Now I would like to make the code shorter and safer by introducing an enum for the valid tag values:
enum Tags: String {
case one
case two
case three
}
But I still have to call the function with a String:
let foo = findFooByTag(Tags.one.rawValue)
Is there a way to say “findFooByTag takes any string-based enum”? I have found this:
func findFooByTag<T>(_ tag: T) -> Foo where T: RawRepresentable, T.RawValue == String
But that’s quite a mouthful. Is it at least possible to sweep that under the rug with a type alias somehow?
What you have found looks awesome, but still I would suggest something like the following:
protocol Taggable {
var raw: String { get }
}
extension String: Taggable {
var raw: String { return self }
}
enum Tag: String, Taggable {
var raw: String {
return self.rawValue
}
case one = "aa"
case two = "bb"
case three = "cc"
}
func findByTag(_ tag: Taggable) {
if tag.raw == "aa" { ... }
// do something...
}
findByTag(Tag.one) // works
findByTag("abc") // also works
As there is nothing in common between enum's having a String RawValue, there is no common type for these or no protocol to which all would conform.
However, Swift 4 introduces type constraints on associated types using where clauses as described in SE-0142. Using this new capability, you can define a protocol with an associated type the type constraints describing an enum with a String rawValue, then you only need to make your Tags enum conform to this protocol and you won't need the type constraint in your function definition anymore.
class Foo {}
protocol StringEnum {
associatedtype EnumType: RawRepresentable = Self where EnumType.RawValue == String
static func findFooByTag<EnumType>(_ tag: EnumType) -> Foo
}
extension StringEnum where EnumType == Self {
static func findFooByTag<EnumType>(_ tag: EnumType) -> Foo {
return Foo()
}
}
enum Tags: String, StringEnum {
case one
case two
case three
}
let foo = Tags.findFooByTag(Tags.one)
This is implementation of course could be improved, but this is just an example showing how you can use a where clause to implement the type constraint using a protocol and its associatedType.
Due to the default implementation fo the findFooByTag func in the protocol extension, you don't need to implement the function for all of your custom enum types having a String rawValue, you only need to declare them as conforming to the StringEnum protocol.
If you don't have Xcode9 installed, you can play around with this code in the IBM Swift Sandbox using this link.
Maybe you can try do that with CustomStringConvertible?
enum Tags: String, CustomStringConvertible {
case one
case two
case three
var description: String {
return self.rawValue
}
}
func findFooByTag<T>(_ tag: T) -> Foo where T: CustomStringConvertible
looks more better
or just
func findFooByTag<T>(_ tag: CustomStringConvertible) -> Foo
For this purpose you can use any kind of wrapper object. For example:
enum TypeNotSpecifiedTag {
case one
}
enum StringTag: String {
case one
}
enum IntTag: Int {
case one = 1
}
enum Wrapper<T>: RawRepresentable {
typealias RawValue = T
case value(T)
init?(rawValue: RawValue) {
self = .value(rawValue)
}
var rawValue: RawValue {
switch self {
case let .value(item):
return item
}
}
}
print(Wrapper.value(TypeNotSpecifiedTag.one).rawValue) // "one"
print(Wrapper.value(StringTag.one.rawValue).rawValue) // "one"
print(Wrapper.value(IntTag.one.rawValue).rawValue) // 1
Notice, that according to documentation about RawValue, you doesn't always need to specify RawValue, that's why first example also compile.
As an exercise in learning I'm rewriting my validation library in Swift.
I have a ValidationRule protocol that defines what individual rules should look like:
protocol ValidationRule {
typealias InputType
func validateInput(input: InputType) -> Bool
//...
}
The associated type InputType defines the type of input to be validated (e.g String). It can be explicit or generic.
Here are two rules:
struct ValidationRuleLength: ValidationRule {
typealias InputType = String
//...
}
struct ValidationRuleCondition<T>: ValidationRule {
typealias InputType = T
// ...
}
Elsewhere, I have a function that validates an input with a collection of ValidationRules:
static func validate<R: ValidationRule>(input i: R.InputType, rules rs: [R]) -> ValidationResult {
let errors = rs.filter { !$0.validateInput(i) }.map { $0.failureMessage }
return errors.isEmpty ? .Valid : .Invalid(errors)
}
I thought this was going to work but the compiler disagrees.
In the following example, even though the input is a String, rule1's InputType is a String, and rule2s InputType is a String...
func testThatItCanEvaluateMultipleRules() {
let rule1 = ValidationRuleCondition<String>(failureMessage: "message1") { $0.characters.count > 0 }
let rule2 = ValidationRuleLength(min: 1, failureMessage: "message2")
let invalid = Validator.validate(input: "", rules: [rule1, rule2])
XCTAssertEqual(invalid, .Invalid(["message1", "message2"]))
}
... I'm getting extremely helpful error message:
_ is not convertible to ValidationRuleLength
which is cryptic but suggests that the types should be exactly equal?
So my question is... how do I append different types that all conform to a protocol with an associated type into a collection?
Unsure how to achieve what I'm attempting, or if it's even possible?
EDIT
Here's it is without context:
protocol Foo {
typealias FooType
func doSomething(thing: FooType)
}
class Bar<T>: Foo {
typealias FooType = T
func doSomething(thing: T) {
print(thing)
}
}
class Baz: Foo {
typealias FooType = String
func doSomething(thing: String) {
print(thing)
}
}
func doSomethingWithFoos<F: Foo>(thing: [F]) {
print(thing)
}
let bar = Bar<String>()
let baz = Baz()
let foos: [Foo] = [bar, baz]
doSomethingWithFoos(foos)
Here we get:
Protocol Foo can only be used as a generic constraint because it has
Self or associated type requirements.
I understand that. What I need to say is something like:
doSomethingWithFoos<F: Foo where F.FooType == F.FooType>(thing: [F]) {
}
Protocols with type aliases cannot be used this way. Swift doesn't have a way to talk directly about meta-types like ValidationRule or Array. You can only deal with instantiations like ValidationRule where... or Array<String>. With typealiases, there's no way to get there directly. So we have to get there indirectly with type erasure.
Swift has several type-erasers. AnySequence, AnyGenerator, AnyForwardIndex, etc. These are generic versions of protocols. We can build our own AnyValidationRule:
struct AnyValidationRule<InputType>: ValidationRule {
private let validator: (InputType) -> Bool
init<Base: ValidationRule where Base.InputType == InputType>(_ base: Base) {
validator = base.validate
}
func validate(input: InputType) -> Bool { return validator(input) }
}
The deep magic here is validator. It's possible that there's some other way to do type erasure without a closure, but that's the best way I know. (I also hate the fact that Swift cannot handle validate being a closure property. In Swift, property getters aren't proper methods. So you need the extra indirection layer of validator.)
With that in place, you can make the kinds of arrays you wanted:
let len = ValidationRuleLength()
len.validate("stuff")
let cond = ValidationRuleCondition<String>()
cond.validate("otherstuff")
let rules = [AnyValidationRule(len), AnyValidationRule(cond)]
let passed = rules.reduce(true) { $0 && $1.validate("combined") }
Note that type erasure doesn't throw away type safety. It just "erases" a layer of implementation detail. AnyValidationRule<String> is still different from AnyValidationRule<Int>, so this will fail:
let len = ValidationRuleLength()
let condInt = ValidationRuleCondition<Int>()
let badRules = [AnyValidationRule(len), AnyValidationRule(condInt)]
// error: type of expression is ambiguous without more context
I'm trying to add functionality to an NSManagedObject via a protocol. I added a default implementation which works fine, but as soon as I try to extend my subclass with the protocol it tells me that parts of it are not implemented, even though I added the default implementation.
Anyone having Ideas of what I'm doing wrong?
class Case: NSManagedObject {
}
protocol ObjectByIdFetchable {
typealias T
typealias I
static var idName: String { get }
static func entityName() -> String
static func objectWithId(ids:[I], context: NSManagedObjectContext) -> [T]
}
extension ObjectByIdFetchable where T: NSManagedObject, I: AnyObject {
static func objectWithId(ids:[I], context: NSManagedObjectContext) -> [T] {
let r = NSFetchRequest(entityName: self.entityName())
r.predicate = NSPredicate(format: "%K IN %#", idName, ids)
return context.typedFetchRequest(r)
}
}
extension Case: ObjectByIdFetchable {
typealias T = Case
typealias I = Int
class var idName: String {
return "id"
}
override class func entityName() -> String {
return "Case"
}
}
The error I get is Type Case doesn't conform to protocol ObjectByIdFetchable
Help very much appreciated.
We'll use a more scaled-down example (below) to shed light on what goes wrong here. The key "error", however, is that Case cannot make use of the default implementation of objectWithId() for ... where T: NSManagedObject, I: AnyObject; since type Int does not conform to the type constraint AnyObject. The latter is used to represent instances of class types, whereas Int is a value type.
AnyObject can represent an instance of any class type.
Any can represent an instance of any type at all, including function types.
From the Language Guide - Type casting.
Subsequently, Case does not have access to any implementation of the blueprinted objectWithId() method, and does hence not conform to protocol ObjectByIdFetchable.
Default extension of Foo to T:s conforming to Any works, since Int conforms to Any:
protocol Foo {
typealias T
static func bar()
static func baz()
}
extension Foo where T: Any {
static func bar() { print ("bar") }
}
class Case : Foo {
typealias T = Int
class func baz() {
print("baz")
}
}
The same is, however, not true for extending Foo to T:s conforming to AnyObject, as Int does not conform to the class-type general AnyObject:
protocol Foo {
typealias T
static func bar()
static func baz()
}
/* This will not be usable by Case below */
extension Foo where T: AnyObject {
static func bar() { print ("bar") }
}
/* Hence, Case does not conform to Foo, as it contains no
implementation for the blueprinted method bar() */
class Case : Foo {
typealias T = Int
class func baz() {
print("baz")
}
}
Edit addition: note that if you change (as you've posted in you own answer)
typealias T = Int
into
typealias T = NSNumber
then naturally Case has access to the default implementation of objectWithId() for ... where T: NSManagedObject, I: AnyObject, as NSNumber is class type, which conforms to AnyObject.
Finally, note from the examples above that the keyword override is not needed for implementing methods blueprinted in a protocol (e.g., entityName() method in your example above). The extension of Case is an protocol extension (conforming to ObjectByIdFetchable by implementing blueprinted types and methods), and not really comparable to subclassing Case by a superclass (in which case you might want to override superclass methods).
I found the solution to the problem. I thought it's the typealias T which is the reason for not compiling. That's actually not true, it's I which I said to AnyObject, the interesting thing is that Int is not AnyObject. I had to change Int to NSNumber
I need to get some objects from REST API and map them to local objects using ObjectMapper.
These objects contain a number of enumerations. All of them are coming as integers and I want to map them to locally described enums.
To do that I have to describe standard transform function that is used by ObjectMapper.
enum Types: Int {
case Uno = 1
case Dos = 2
case Tres = 3
static var transform = TransformOf<Types,Int>(
fromJSON: {
$0 != nil
? Types(rawValue:$0!)
: nil
},
toJSON: { $0?.rawValue})
}
The problem is that I have a number of these enumerations and the function is totally same in all of them except that first argument in TransformOf<..> list is specific for each enum.
What I want to do is to create a common protocol with default implementation of that function, something like
protocol Transformable {
var transform: TransformOf<self.Type,Int> {
get {
return TransformOf<self.Type,Int>(
fromJSON: {
$0 != nil
? Types(rawValue:$0!)
: nil
},
toJSON: { $0?.rawValue})
}
}
}
...and then to apply the protocol with the implementation to all of the enumerations I have.
Obviously reference of self.Type is not working there and I just can't get how to generally refer to type of specific instance that will finally use the function? Probably I'm thinking wrong way of solving that problem.
I think what you're missing is the Self identifier. When implementing Generics, the Self keyword acts as a placeholder for the type that implements your protocol. (For more information)
In other words:
protocol Transformable {
var rawValue: Int { get }
init?(rawValue: Int)
func toJSON() -> Int
static func fromJSON(rawValue: Int) -> Self?
}
Each enum that conforms to the protocol Transformable will then have a static method that returns its own type.
Secondly, since this is Swift 2, you can implement a protocol extension:
extension Transformable {
func toJSON() -> Int {
return self.rawValue
}
static func fromJSON(rawValue: Int) -> Self? {
return Self(rawValue: rawValue)
}
}
Now all enums that conform to the protocol will convert themselves to and from Int:
enum Types: Int, Transformable {
case Uno = 1
case Dos = 2
case Tres = 3
//No extra implementation
}
enum OtherTypes: Int, Transformable {
case Cuatro = 4
case Cinco = 5
case Seis = 6
//No extra implementation
}
print(Types.fromJSON(1)!) //prints Uno
print(OtherTypes.fromJSON(4)!) //prints Cuatro
print(Types.fromJSON(4)!) /* throws an error, because the Types enum
does not recognise 4 as a raw value */
I have tried to boil this issue down to its simplest form with the following.
Setup
Xcode Version 6.1.1 (6A2008a)
An enum defined in MyEnum.swift:
internal enum MyEnum: Int {
case Zero = 0, One, Two
}
extension MyEnum {
init?(string: String) {
switch string.lowercaseString {
case "zero": self = .Zero
case "one": self = .One
case "two": self = .Two
default: return nil
}
}
}
and code that initializes the enum in another file, MyClass.swift:
internal class MyClass {
let foo = MyEnum(rawValue: 0) // Error
let fooStr = MyEnum(string: "zero")
func testFunc() {
let bar = MyEnum(rawValue: 1) // Error
let barStr = MyEnum(string: "one")
}
}
Error
Xcode gives me the following error when attempting to initialize MyEnum with its raw-value initializer:
Cannot convert the expression's type '(rawValue: IntegerLiteralConvertible)' to type 'MyEnum?'
Notes
Per the Swift Language Guide:
If you define an enumeration with a raw-value type, the enumeration automatically receives an initializer that takes a value of the raw value’s type (as a parameter called rawValue) and returns either an enumeration member or nil.
The custom initializer for MyEnum was defined in an extension to test whether the enum's raw-value initializer was being removed because of the following case from the Language Guide. However, it achieves the same error result.
Note that if you define a custom initializer for a value type, you will no longer have access to the default initializer (or the memberwise initializer, if it is a structure) for that type. [...]
If you want your custom value type to be initializable with the default initializer and memberwise initializer, and also with your own custom initializers, write your custom initializers in an extension rather than as part of the value type’s original implementation.
Moving the enum definition to MyClass.swift resolves the error for bar but not for foo.
Removing the custom initializer resolves both errors.
One workaround is to include the following function in the enum definition and use it in place of the provided raw-value initializer. So it seems as if adding a custom initializer has a similar effect to marking the raw-value initializer private.
init?(raw: Int) {
self.init(rawValue: raw)
}
Explicitly declaring protocol conformance to RawRepresentable in MyClass.swift resolves the inline error for bar, but results in a linker error about duplicate symbols (because raw-value type enums implicitly conform to RawRepresentable).
extension MyEnum: RawRepresentable {}
Can anyone provide a little more insight into what's going on here? Why isn't the raw-value initializer accessible?
This bug is solved in Xcode 7 and Swift 2
extension TemplateSlotType {
init?(rawString: String) {
// Check if string contains 'carrousel'
if rawString.rangeOfString("carrousel") != nil {
self.init(rawValue:"carrousel")
} else {
self.init(rawValue:rawString)
}
}
}
In your case this would result in the following extension:
extension MyEnum {
init?(string: String) {
switch string.lowercaseString {
case "zero":
self.init(rawValue:0)
case "one":
self.init(rawValue:1)
case "two":
self.init(rawValue:2)
default:
return nil
}
}
}
You can even make the code simpler and useful without switch cases, this way you don't need to add more cases when you add a new type.
enum VehicleType: Int, CustomStringConvertible {
case car = 4
case moped = 2
case truck = 16
case unknown = -1
// MARK: - Helpers
public var description: String {
switch self {
case .car: return "Car"
case .truck: return "Truck"
case .moped: return "Moped"
case .unknown: return "unknown"
}
}
static let all: [VehicleType] = [car, moped, truck]
init?(rawDescription: String) {
guard let type = VehicleType.all.first(where: { description == rawDescription })
else { return nil }
self = type
}
}
Yeah this is an annoying issue. I'm currently working around it using a global-scope function that acts as a factory, i.e.
func enumFromString(string:String) -> MyEnum? {
switch string {
case "One" : MyEnum(rawValue:1)
case "Two" : MyEnum(rawValue:2)
case "Three" : MyEnum(rawValue:3)
default : return nil
}
}
This works for Swift 4 on Xcode 9.2 together with my EnumSequence:
enum Word: Int, EnumSequenceElement, CustomStringConvertible {
case apple, cat, fun
var description: String {
switch self {
case .apple:
return "Apple"
case .cat:
return "Cat"
case .fun:
return "Fun"
}
}
}
let Words: [String: Word] = [
"A": .apple,
"C": .cat,
"F": .fun
]
extension Word {
var letter: String? {
return Words.first(where: { (_, word) -> Bool in
word == self
})?.key
}
init?(_ letter: String) {
if let word = Words[letter] {
self = word
} else {
return nil
}
}
}
for word in EnumSequence<Word>() {
if let letter = word.letter, let lhs = Word(letter), let rhs = Word(letter), lhs == rhs {
print("\(letter) for \(word)")
}
}
Output
A for Apple
C for Cat
F for Fun
Add this to your code:
extension MyEnum {
init?(rawValue: Int) {
switch rawValue {
case 0: self = .Zero
case 1: self = .One
case 2: self = .Two
default: return nil
}
}
}