Retrieve tuple from string - scala

I have the following input string:
"0.3215,Some(0.5123)"
I would like to retrieve the tuple (0.3215,Some(0.5123)) with: (BigDecimal,Option[BigDecimal]).
Here is one of the thing I tried so far:
"\\d+\\.\\d+,Some\\(\\d+\\.\\d+".r findFirstIn iData match {
case None => Map[BigDecimal, Option[BigDecimal]]()
case Some(s) => {
val oO = s.split(",Some\\(")
BigDecimal.valueOf(oO(0).toDouble) -> Option[BigDecimal](BigDecimal.valueOf(lSTmp2(1).toDouble))
}
}
Using a Map and transforming it into a tuple.
When I try directly the tuple I get an Equals or an Object.
Must miss something here...

Your code has several issues, but the big one seems to be that the case None side of the match returns a Map but the Some(s) side returns a Tuple2. Map and Tuple2 unify to their lowest-common-supertype, Equals, which is what you're seeing.
I think this is what you're trying to achieve?
val Pattern = "(\\d+\\.\\d+),Some\\((\\d+\\.\\d+)\\)".r
val s = "0.3215,Some(0.5123)"
s match {
case Pattern(a,b) => Map(BigDecimal(a) -> Some(BigDecimal(b)))
case _ => Map[BigDecimal, Option[BigDecimal]]()
}
// Map[BigDecimal,Option[BigDecimal]] = Map(0.3215 -> Some(0.5123))

Related

scala directly map fields of sequence elements

I have a collection with elements that have a field field1. I want to get all field1s that are options of type MyType.
Currently this is my code.
elems.map(_.field1).map {case Some(found: MyType) => found}
I'm sure this can be done in a much nicer way.. It bugs me that I need to use map twice. Is there a way to do this with only one map/collect ?
EDIT: My code works. I'm just wondering if it can be done in a better (i.e. shorter or prettier way).
elems.flatMap(_.field1.collect { case x: MyType => x })
I believe utilising .flatMap may solve this issue for you
elems.flatMap(_.field1 match {
case myType: MyType => Some(myType)
case _ => None
}
Calling iterator before transforming the collection accumulates all the transformations into a single one so perhaps try
elems
.iterator
.flatMap(_.field1)
.collect { case v: MyType => v }
.toList
if your Seq type is case class you can use pattern matching with one collect function like so (see actual seq):
case class MyTypeWrapper(field1: Option[MyType])
case class MyType(x: String)
val elems = Seq.empty[MyTypeWrapper]
val expected: Seq[MyType] = elems.map(_.field1).map{ case Some(found: MyType) => found }
val actual: Seq[MyType] = elems.collect{ case MyTypeWrapper(Some(mt: MyType)) => mt }
// expected and actual should contains the same elements

Check if a value either equals a string or is an an array which contains a string

A Scala map contains a key X.
The value can be either an array of Strings Array("Y")
or a simple String object, "Y".
I need to retrieve the value from the map and test
if the value is a string,
mayMap("X")=="Y"
or, if the value is an array.
myMap("X").contains("Y")
I don't want to use an if statement statement to check the type first of the value first of all. One option would be to write a function which checks the value, if it is an array then return the array, otherwise create an array with the single string element contained in the map. Then the call would be:
myToArrayFunction(myMap("X")).contains("Y")
That's what I actually do in Java.
But this is Scala. Is there a better idiom to do this in one line using pre-existing functions?
This should work:
myMap.get("X") match {
case None => println("oh snap!")
case Some(x) => x match {
case i: String => println(s"hooray for my String $i") // do something with your String here
case a: Array[String] => println(s"It's an Array $a") // do something with your Array here
}
}
case class Y(name: String)
//val a = Map[String, Any]("X" -> "Y")
val a = Map[String, Any]("X" -> Y("Peter"))
a.getOrElse("X", "Default") match {
case s: String => println(s)
case Y(name) => println(name)
}
you can also use something like this:
//val a = Map[String, Any]("X" -> "Y")
val a = Map[String, Any]("X" -> Y("Peter"))
a.map(v => println(v._2))

Scala methods with generic parameter type

I have been working with Scala for close to a year, but every now and then I come across a piece of code that I don't really understand. This time it is this one. I tried looking into documents on "scala methods with generic parameter type", but I am still confused.
def defaultCall[T](featureName : String) (block : => Option[T])(implicit name: String, list:Seq[String]) : Option[T] =
{
val value = block match {
case Some(n) => n match {
case i : Integer => /*-------Call another method----*/
case s : String => /*--------Call another method----*/
}
case _ => None
}
The method is called using the code shown below :
var exValue = Some(10)
val intialization = defaultCall[Integer]("StringName"){exValue}
What I don't understand in the above described code is the "case" statement in the defaultCall method.
I see that when the exValue has a value and is not empty, the code works as expected. But in case I change the exValue to None, then my code goes into the "case _ = None" condition. I don't understand why this happens since the match done here is against the "variable" which would be either an Integer or a String.
What happens here is that when you pass a None it will match on the second case, which "catches" everything that is not an instance of a Some[T]:
block match {
case Some(n) => // Will match when you pass an instance of Some[T]
case _ => // Will match on any other case
}
Note that None and Some are two different classes that inherit from Option.
Also, the variable match is only done if the first match succeeds, otherwise not. To achieve the type checking in the first match you could do:
block match {
case Some(n: Int) => // do stuff
case Some(n: String) => // do stuff
case _ => // Will match on any other case
}
Hope that helps

map expression in case clause in scala pattern matching

I have a configuration value that matches to one of the values in a map and depending on to which it matches i take an action. Here is some sample code of what i am trying to do
val x = 1 // or 2 or 3
val config = Map("c1"-> 1, "c2"-> 2, "c3"-> 3)
x match {
case config("c1") =>
println("1")
case config("c2") =>
println("2")
case config("c3") =>
println("3")
}
Now this should print 1 because config("c1") evaluates to 1 but it gives error
error: value config is not a case class, nor does it have an unapply/unapplySeq member
case config("c1") =>
Similarly for the other 2 cases. Why should i have an unapply here? Any pointers?
An expression like that looks like an extractor, hence the message about unapply/unapplySeq methods. If you don't want to use an extractor but just want to match against a plain value, you need to store that value in a stable identifier - you can't use an arbitrary expression as a match case:
val case1 = config("c1")
x match {
case case1 => println("1")
...
}
To the best of my knowledge, in Scala, x match {case config("c1") gets translated to config.unapply(x) with the branching dependent on the result of the unapply method. As Imm already mentioned in his answer, this isn't the case for stable identifiers (literals and val), and I'd encourage you to use his solution.
Nevertheless, to show you how you could solve the problem using extractors, I'd like to post a different solution:
def main(args: Array[String]): Unit = {
object config {
val configData = Map("c1" -> 1, "c2" -> 2, "c3" -> 3)
def unapply(value: Int): Option[String] = configData find (_._2 == value) map (_._1)
}
1 to 4 foreach {
case config("c1") => println("1")
case config("c2") => println("2")
case config("c3") => println("3")
case _ => println("no match")
}
}
I changed the match for a foreach to show the different results, but this has no effect on the implementation. This would print:
1
2
3
no match
As you can see, case config("c1") now calls the unapply method and checks whether the result is Some("c1"). Note that this is inverse to how you'd use a map: The key is searched according to the value. However, this makes sense: If in the map, "c1" and "c2" both map to 1, then 1 matches both, the same way _ matches everything, in our case even 4 which is not configured.
Here's also a very brief tutorial on extractors. I don't find it particularly good, because both, the returned type and the argument type are Int, but it might help you understand what's going on.
As others have stated, with x match { case config("c1") => ..., scala looks for an extractor by the name of config (something with an unapply method that takes a single value and returns an Optional value); Making pattern matching work this way seems like an abuse of the pattern, and I would not use an extractor for this.
Personally, I would recommend one of the following:
if (x == config("c1"))
println("1")
else if (x == config("c2"))
println("2")
else ...
Or, if you're set on using a match statement, you can use conditionals like this:
x match {
case _ if x == config("c1") =>
println("1")
case _ if x == config("c2") =>
println("2")
case _ if x == config("c3") =>
println("3")
}
Not as clean; unfortunately, there isn't a way to invoke a method call literally where the extractor goes. You can use back-ticks to tell scala "match against the value of this variable" (rather than default behavior, which would yield the value named as that variable):
val (c1,c2,c3) = (config("c1"), config("c2"), config("c3"))
x match {
case `c1` =>
println("1")
case `c2` =>
println("2")
case `c3` =>
println("3")
}
Finally, if your goal is to reverse-apply a map, maybe try this instead?
scala> Map("a" -> 1).map { case (k,v) => (v,k) }
res0: scala.collection.immutable.Map[Int,String] = Map(1 -> a)

Scala Map pattern matching

How to do pattern matching on a Map in Scala ?
A (non working) attempt includes,
Map("a"->1, "b"->2, "c"->3) match {
case Map(a,b,_*) => a
}
which errs with
value Map is not a case class, nor does it have an unapply/unapplySeq member
case Map(a,b,_*) => a
The error is indicative enough, yet how to enrich Map with an unapply method for pattern matching ?
Many Thanks
Update
Following #Paul's comment, a neater use case may be like this,
Map("a"->1, "b"->2, "c"->3) match {
case Map("b"->2,_*) => "222"
}
namely, in this case, if map contains key b that maps onto value 2.
Most easy way is tramsform Map to List:
Map("a"->1, "b"->2, "c"->3).to[List] match {
case List(a,b,_*) => a
}
An approach to enriching Map with an unapplySeq method for pattern matching includes this,
object MapExtractor {
def unapplySeq[A <% Ordered[A], B <% Ordered[B]]
(s: Map[A,B]): Option[Seq[(A,B)]] = Some(s.toSeq.sorted)
}
where the sorting approach may be changed to any orderable (items comparable) logic. In this example,
Map("b"->2, "a"->1, "c"->3) match {
case MapExtractor ( x, xs # _* ) => println(s"x: $x") ; println(s"xs: $xs")
}
delivers
x: (a,1)
xs: ArrayBuffer((b,2), (c,3))