Prioritizing packets streaming in OpenFlow, mininet - streaming

I am doing work on security and priority in SDN.
I have a typology of this form
h1---s1--s2---h2
I have to pass packets of h1 to h2, prioritizing packets streaming. And check somehow they are correct. i don't know how to do that with OpenFlow and MiniNet. Anyone have any idea how to do it?

I believe from security and priority, you mean to say FireWall and Traffic shaping services respectively. As far as I know you cannot achieve traffic shaping just be OpenFlow(Though firewall service could be achieved to an extent by OpenFlow). In short OpenFlow is meant for setting forwarding rules for an in coming packet. Though there are plugins such as NICIRA which can add some functionality such as handling TCP, UDP, ARP packets, but the primary job of openflow packet is to forward packet to next port, drop or punt to controller based on flow rules.
However in your case, You need to implement SFC. You need to deploy firewall or traffic shaping applications(an opensource traffic shaping application here) in a separate server. you need to configure VXLAN on S1 and S2. Then add flows on S1 and S2 such that packets are forwarded to the server. and other flow to forward the flows from the server to next destination. In the Server you apply firewall and traffic shaping rules on packet by packet basis.
Hope this basic information atleast helps you to where to look for information / get going.
EDIT
Please look at really good tutorial from David Mahler, specifically the introduction to OpenFlow, this would clear your doubts on Packet traversal in OpenvSwitch.
Coming to Controller, there are number of controller implementations with languages from C++, Python, Java to Ruby.
Assuming you are a python developer, you can check with POX, here are good tutorial links(link1 and link2) however I'm not sure how well its maintained, I see the commits for code was last done 3 years ago, not sure it is actively maintained. There is also example to parse the packet here, where you can apply appropriate algorithm. If you are looking for Java there are controllers such as Floodlight and Opendaylight, which has pretty much better community support.

Related

Connect sockets directly after introduction through server

I'm looking for the name of a protocol and example code that permits handing off IP/port connections to establish unmediated P2P after introduction through a server.
Simple example:
You and I both start chat programs that connect to chatintroduce.com (fictional server). I send you a "Hi! Wanna chat?" message. It doesn't get sent. Instead my chat program tells chatintroduce to send your chat program a request for connection. You respond to a prompt and your chat program tells chatintroduce to broker the connection. Chatintroduce establishes an initial two-way connection between us. Now, this final step is important, chatintroduce releases control and our two chat programs now talk directly to each other without any traffic through chatintroduce.
In other words, I construct packets which have your IP address and you receive them without interference from firewalls, NATs or any other technologies. In other words, true peer-to-peer connection independent of intermediate server.
I need to know what search terms to use to find appropriate technology. An RFC name would suffice. I've been searching for days without success.
I think what you are looking for is TCP/UDP hole punching which typically coordinates the P2P connection using a STUN server to determine the "capabilities" of the firewalls (e.g. is it a full cone nat? symmetric?).
https://en.wikipedia.org/wiki/Hole_punching_(networking)
We employed this at a company I worked for to create a kind of BitTorrent that could circumvent firewalls for streaming video between two peers.
Note that sometimes it is NOT possible to establish a connection without the intermediary.
What you are looking for is ICE protocol. RFC 5245. This protocol is used for connecting two peers through NAT traversal. There are some open source libraries and also some proprietary libraries for this. You can search google with ICE implementation.
You will also need to read about some additional protocols. These are used with ICE protocol. They are STUN and TURN.
For some cases you can't make P2P call 100% time. You will have to use a relay server. Like if the NAT combination of two peers are Symmetric vs Symmetric/PRC. That relay server is called TURN server.
Some technique like Port forwarding and TCP/UDP hole punching will help you to increase P2P rates.
See this answer for more information about which combination of NAT will require a relay server and which don't.
Thank you. I will be looking further into ICE, STUN, TURN, and hole-punching.
I also found n2n which looks like almost exactly what I wanted.
https://github.com/meyerd/n2n
http://xmodulo.com/configure-peer-to-peer-vpn-linux.html
With n2n, one makes a VPN with a super node that all other edge nodes know.
But once the introductions are made, the super node can be absent.
This was exactly what I wanted. I hope it works across platforms (linux, MacOS, Windows).
Again, I am still researching before implementation, so your advice was very important to me.
Thank you.
Use PJNATH. Its open source.
http://www.pjsip.org/pjnath/docs/html/
There is not much open source on NAT Traversal. As far as I know PJNATH is good.
For server you can use Google's Open source STUN and TURN server.

What's the difference between SIP/XMPP for web conferencing and file-sharing?

I want to setup a personal videoconferencing service for my family, friends and myself. The main problem I have with current options is that they are either closed-source and centralized (GG hangouts, skype) or open-source but not working in corporate environment or in hotels (due to strict firewalling rules and the "Skype is going through, if you want VOIP use that" kind of netadmin reaction).
I have two solutions then. Either setup a STUN/TURN relay server and use XMPP and SIP as I used to, but that would require my friends to setup that too. Or setup a whole VOIP server. 2 solutions come to mind: SIP and XMPP. Though to my knowledge, each of them ultimately uses the (S)RTP/RTCP protocol.
And that's the problem. Out of the specific signaling part used by the two of them, I really can't figure out the difference between them, their typical use case.
I think you're right in that as far as setting up a video conferencing system XMPP and SIP are equivalent. They both are signalling only protocols and the media sessions they set up typically use RTP (although they can both be used to set up any kind of session you want but RTP is the norm).
The biggest problem is also going to be the one you mention about getting video streams out of a corporate firewall. Skype overcomes this obstacle by sending it's media over an SSL connection and is thus able to get through firewalls. Theoretically you could do the same with RTP and in the past I once used openvpn connections with a SIP client to test some audio calls. My experience wasn't great as the audio was very choppy, assumedly as a result of all the extra packaging that is required to get the high volume of small audio packets from one end to the other. That was nearly a decade ago though so perhaps with the better CPU and bandwidth resources available now it would work better.
Personally I think I'd stick with Skype as it's going to be a big hassle to set up your own system. If you were to go ahead with your own the first option I would try would be Asterisk combined with openvpn so that if the clients were behind a firewall or had NAT issues they could connect over it.

How to use UDP from a machine with only NAT access

I have a machine, with no external IP address, it will need to send UDP packets to the outside world. Only NAT access.
Will this work?
It is really hard to prototype this in our environment.
It is still really under construction.
Any thoughts on how I can prototype this?
Most of the home network configurations in the world are made of a PC with an internal IP and a router with a public IP that NAT the internal one. (Independently of UDP/TCP or whatever protocol that needs to go out)
I see no troubles with it
It should work.
Ensure that for the socket created, set the TTL (time-to-live) to a value that is sufficiently large to cover the possible number of router hops to reach the destination. Running traceroute to the destination IP will give you a rough idea on the number of hops. Note that this value can change depending on network conditions. So it's best to set this to a larger value. Refer to sockets IOCtl API documentation for the syntax for setting TTL.
Finally, remember that UDP is not a reliable protocol. So even after taking the necessary steps above, the packet may not reach its destination. However, if the entire network, including the intermediary routers, is within a controlled environment, such as a corporate intranet, chances of packet drop are minimal.
If you want to add reliability on top of UDP, you can adopt a NAK based algorithm where packets are stamped with a sequence number. Various resources might advise you that if you need to add reliability over UDP you should consider TCP, but my experience has been that if your app runs in a controlled environment with very minimal chance of packet drops and you need fast connection setup and tear down, adding a lightweight reliability over UDP has its merits. Also TCP connections take up valuable space in the OS kernel whereas UDP don't. This could also be a consideration if you want to support very large number of 'connections' in a constrained environment.
At the end of the day you need to experiment a little to figure out what works best for you.
To prototype, I would set up a NAT server using something like Linux and then start working from there. Real world traffic scenarios that you want to simulate will determine where the client and server are to be located on either side of the NAT. That is, if the traffic should go through an ISP or all within a controlled environment.
HTH

Is using Erlang's gen_tcp a scalable way to construct a high traffic socket server

I am trying to learn Erlang to do some simple but scalable network programming. I basically want to write a program that does what servers on the backbone of the internet do--but on a smaller scale. I want to try to set up an intranet with web accessible servers which would act as gateways to the intranet [sic] and route data to connected clients and/or other gateways.
The high traffic would come from the fact that data would not only flow from client to gateway to client, but might have to bounce around a few gateways to get to the destination (like how data travels on the internet). This means that the gateways would have to not only handle traffic from their clients, but traffic from other gateways' clients.
I figured this would lead to unusually high levels of traffic, even for a medium number of clients and gateways.
Coming from a background in Python and, to a lesser extent, other scripting languages, I am used to digging for a customized module to solve my problems. I understand Erlang is designed for high traffic network programming, but all I could find in terms of libraries/modules for this kind of thing was gen_tcp.
Does this mean that Erlang is already so optimized for this kind of thing that you can fire it up with its most basic modules and expect it to scale nicely?
You can expect gen_tcp to perform extremely well, even under conditions of massive load. If you are just going to pass around data and not process it much, then my guess is you will be able to scale quite nicely - effectively you will just be passing around pointers.
All of the known scalable solutions written in Erlang uses gen_tcp:
Cowboy, Mochiweb, Yaws, ...
Riak
Etorrent
RabbitMQ
and so on. When using it, there is a hint worth mentioning though: Make sure you run erl as erl +K true so you get access to the kernel polling. That is, epoll() on Linux, kqueue()/kevent() on BSD and /dev/poll on Solaris. Also note that you can give commands to TCP ports to set their options w.r.t. buffer size and so on. Finally, for certain types of packets, you can have the C-layer parse the packet for you, see erl -man inet and the setopts/2 call. An example would be {packet, 4} which is quite popular.
In general, Erlang has a quite fast I/O sublayer. You can expect it to perform really quickly, even for large complex interactions.

Single source pushing: how to send 5kb each 5 minutes to 50000 clients

I need to implement a client server architecture where the server sends
the same message to many clients over the internet.
I need to send a single message every 5 minutes about.
The message won't excede 5KB.
I need the solution to scale to a big number of clients connected (50.000-100.000)
I considered a bunch of solutions:
TCP Sockets
UDP Multicast
WCF http duplex service (comet)
I think I have to discard UDP solution because it is a good solution only for clients on the same network and it won't work over the internet.
I read somewhere that WCF multicast will cause a bottleneck if I have many clients connected but I can't find anywhere documentation showing performance statistics.
Tcp sockets seems to me the solution to chose.
What do you think about? Am I correct?
I'm certainly wrong when I say UDP doesn't work on internet... I thought
this because I read some articles pointing out that you need properly
configured routers in the network to support multicasting... I read of the
udp ports multicast range and thought it was meant to be locally.
Instead, the range 224.0.0.1 - 239.255.255.255 (Class D address group), can be reached over the internet
Considering that in my case reliability is not a crucial point, the udp multicast is a good choice.
The .net framework offers really helpful classes to accomplish this.
I can easily start an UdpClient and begin send data on a multicast address with two lines of code.
At client side it is really easy to.
There is the UdpSingleSourceMulticastClient class that does exactly what I need.
For what concernes reliability and security the .net framework has a smart and simple way of handle DoS attacks, DNS Rebinding attacks and Revers tunnel attacks that is described here: http://msdn.microsoft.com/en-us/library/ee707325(v=vs.95).aspx
The main question is: Do you care if the updates get to the clients?
If you DO then you will need to build something on top of UDP to add reliability. UDP datagrams are NOT reliable and so you should expect that some wont get to the destination. This is more likely if you are pushing UDP datagrams out quickly. Note that your clients might also get multiple copies of the same datagram in some situations with UDP.
50-100k connections with this level of traffic shouldn't be that difficult to achieve with TCP if you have a decent architecture.
See here for some blog posts that I've done on the subject.
http://www.serverframework.com/asynchronousevents/2010/10/how-to-support-10000-concurrent-tcp-connections.html
http://www.serverframework.com/asynchronousevents/2010/10/how-to-support-10000-or-more-concurrent-tcp-connections---part-2---perf-tests-from-day-0.html
http://www.serverframework.com/asynchronousevents/2010/12/one-million-tcp-connections.html
And here's some example code that deals with sending data to many clients.
http://www.serverframework.com/ServerFramework/latest/Docs/examples-datadistributionservers.html
Unicast (tcp sockets) will work fine for a relatively small amount of traffic such as this, but keep on top of multicasting technology, the situation is changing every year.