I am currently taking Machine Learning on the Coursera platform and I am trying to implement Logistic Regression. To implement Logistic Regression, I am using gradient descent to minimize the cost function and I am to write a function called costFunctionReg.m that returns both the cost and the gradient of each parameter evaluated at the current set of parameters.
The problem is better described below:
My cost function is working, but the gradient function is not. Please note that I would prefer to implement this using looping, rather than element-by-element operations.
I am computing theta[0] (in MATLAB, theta(1)) separately as it is not being regularized, i.e. we do not use the first term (with lambda).
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
n = length(theta); %number of parameters (features)
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
% ----------------------1. Compute the cost-------------------
%hypothesis
h = sigmoid(X * theta);
for i = 1 : m
% The cost for the ith term before regularization
J = J - ( y(i) * log(h(i)) ) - ( (1 - y(i)) * log(1 - h(i)) );
% Adding regularization term
for j = 2 : n
J = J + (lambda / (2*m) ) * ( theta(j) )^2;
end
end
J = J/m;
% ----------------------2. Compute the gradients-------------------
%not regularizing theta[0] i.e. theta(1) in matlab
j = 1;
for i = 1 : m
grad(j) = grad(j) + ( h(i) - y(i) ) * X(i,j);
end
for j = 2 : n
for i = 1 : m
grad(j) = grad(j) + ( h(i) - y(i) ) * X(i,j) + lambda * theta(j);
end
end
grad = (1/m) * grad;
% =============================================================
end
What am I doing wrong?
The way you are applying regularization is incorrect. You add regularization after you sum over all training examples but instead you are adding regularization after each example. If you left your code as it was before the correction, you are inadvertently making the gradient step larger and will eventually overshoot the solution. This overshooting will accumulate and will inevitably give you a gradient vector of Inf or -Inf for all components (except for the bias term).
Simply put, place your lambda*theta(j) statement after the second for loop terminates:
for j = 2 : n
for i = 1 : m
grad(j) = grad(j) + ( h(i) - y(i) ) * X(i,j); % Change
end
grad(j) = grad(j) + lambda * theta(j); % Change
end
Related
I am in week 5 of Andrew Ng's Machine Learning Course on Coursera. I am working through the programming assignment in Matlab for this week, and I chose to use a for loop implementation to compute the cost J. Here is my function.
function [J grad] = nnCostFunction(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
% [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of the neural network. The
% parameters for the neural network are "unrolled" into the vector
% nn_params and need to be converted back into the weight matrices.
% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
% Setup some useful variables
m = size(X, 1);
% add bias to X to create 5000x401 matrix
X = [ones(m, 1) X];
% You need to return the following variables correctly
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
% initialize summing terms used in cost expression
sum_i = 0.0;
% loop through each sample to calculate the cost
for i = 1:m
% logical vector output for 1 example
y_i = zeros(num_labels, 1);
class = y(m);
y_i(class) = 1;
% first layer just equals features in one example 1x401
a1 = X(i, :);
% compute z2, a 25x1 vector
z2 = Theta1*a1';
% compute activation of z2
a2 = sigmoid(z2);
% add bias to a2 to create a 26x1 vector
a2 = [1; a2];
% compute z3, a 10x1 vector
z3 = Theta2*a2;
%compute activation of z3. returns output vector of size 10x1
a3 = sigmoid(z3);
h = a3;
% loop through each class k to sum cost over each class
for k = 1:num_labels
% sum_i returns cost summed over each class
sum_i = sum_i + ((-1*y_i(k) * log(h(k))) - ((1 - y_i(k)) * log(1 - h(k))));
end
end
J = sum_i/m;
I understand that a vectorized implementaion of this would be easier, but I do not understand why this implementation is wrong. When num_labels = 10, this function outputs J = 8.47, but the expected cost is 0.287629. I computed J from this formula. Am I misunderstanding the computation? My understanding is that each training example's cost for each of the 10 classes are computed then the cost for all 10 classes for each example are summed together. Is that incorrect? Or did I not implement this in my code properly? Thanks in advance.
the problem is in the formula you are implementing
this expression ((-1*y_i(k) * log(h(k))) - ((1 - y_i(k)) * log(1 - h(k)))); represent the loss in case in binary classification because you were simply have 2 classes so either
y_i is 0 so (1 - yi) = 1
y_i is 1 so (1 - yi) = 0
so you basically take into account only the target class probability.
how ever in case of 10 labels as you mention (y_i) or (1 - yi) not necessary of one of them to be 0 and the other to be 1
you should correct the loss function implementation so that you only take into account the probability of the target class only not all other classes.
My problem is with indexing. Rather than saying class = y(m) it should be class = y(i) since i is the index and m is 5000 from the number of rows in the training data.
I'm using MATLAB to code Regularized Logistic Regression and am using Gradient Descent to discover the parameters. All is based on Andrew Ng's Coursera Machine Learning course. I am trying to code the cost function from Andrew's notes/videos. I am not entirely sure if I'm doing it right.
The main problem is... if the number of iterations gets too large, my cost seems to be blowing up. This happens regardless of whether I normalize or not (converting all the data to be between 0 and 1). This problem also causes the decision boundary being produced to shrink (underfit?). Below are three sample results that were obtained, where the decision boundaries of GD are compared against that of Matlab's fminunc.
As can be seen, the cost shoots up when the number of iterations increases. Could it be that I incorrectly coded the cost? Or is there indeed a possibility that Gradient Descent can overshoot? If it helps, I am providing my code. The code I used to calculate the cost history is:
costHistory(i) = (-1 * ( (1/m) * y'*log(h_x) + (1-y)'*log(1-h_x))) + ( (lambda/(2*m)) * sum(theta(2:end).^2) );, based on the equation below:
The full code is given below. Note that I have called other functions as well in this code. Would appreciate any pointers! :) Thank you in advance!
% REGULARIZED Logistic Regression with Gradient Descent
clc; clear all; close all;
dataset = load('ex2data2.txt');
x = dataset(:,1:end-1); y = dataset(:,end); m = length(y);
% Mapping the features (includes adding the intercept term)
x = mapFeature(x(:,1), x(:,2)); % Change to polynomial of the 6th degree
% Define the initial thetas. Same as the number of features, including
% the newly added intercept term (1s)
theta = zeros(size(x,2),1) + 0.05;
initial_theta = theta; % will be used later...
% Set lambda equals to 1
lambda = 1;
% calculate theta transpose x and also the hypothesis h_x
alpha = 0.005;
itr = 120000; % number of iterations set to 120K
for i = 1:itr
ttrx = x * theta; % theta transpose x
h_x = 1 ./ (1 + exp(-ttrx)); % sigmoid hypothesis
error = h_x - y;
% the gradient a.k.a. the derivative of J(\theta)
for j = 1:length(theta)
if j == 1
gradientA(j,1) = 1/m * (error)' * x(:,j);
theta(j) = theta(j) - alpha * gradientA(j,1);
else
gradientA(j,1) = (1/m * (error)' * x(:,j)) - (lambda/m)*theta(j);
theta(j) = theta(j) - alpha * gradientA(j,1);
end
end
costHistory(i) = (-1 * ( (1/m) * y'*log(h_x) + (1-y)'*log(1-h_x))) + ( (lambda/(2*m)) * sum(theta(2:end).^2) );
end
[cost, grad] = costFunctionReg(initial_theta, x, y, lambda);
% Using MATLAB's built-in function fminunc to minimze the cost function
% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 500);
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[thetafm, cost] = fminunc(#(t)(costFunctionReg(t, x, y, lambda)), initial_theta, options);
close all;
plotDecisionBoundary_git(theta, x, y); % based on GD
plotDecisionBoundary_git(thetafm, x, y); % based on fminunc
figure;
plot(1:itr, costHistory(:), '--r');
title('The cost history based on GD');
I have attempted to implement the iterative version of gradient descent algorithm which however is not working correctly. The vectorized implementation of the same algorithm however works correctly.
Here is the iterative implementation :
function [theta] = gradientDescent_i(X, y, theta, alpha, iterations)
% get the number of rows and columns
nrows = size(X, 1);
ncols = size(X, 2);
% initialize the hypothesis vector
h = zeros(nrows, 1);
% initialize the temporary theta vector
theta_temp = zeros(ncols, 1);
% run gradient descent for the specified number of iterations
count = 1;
while count <= iterations
% calculate the hypothesis values and fill into the vector
for i = 1 : nrows
for j = 1 : ncols
term = theta(j) * X(i, j);
h(i) = h(i) + term;
end
end
% calculate the gradient
for j = 1 : ncols
for i = 1 : nrows
term = (h(i) - y(i)) * X(i, j);
theta_temp(j) = theta_temp(j) + term;
end
end
% update the gradient with the factor
fact = alpha / nrows;
for i = 1 : ncols
theta_temp(i) = fact * theta_temp(i);
end
% update the theta
for i = 1 : ncols
theta(i) = theta(i) - theta_temp(i);
end
% update the count
count += 1;
end
end
And below is the vectorized implementation of the same algorithm :
function [theta, theta_all, J_cost] = gradientDescent(X, y, theta, alpha)
% set the learning rate
learn_rate = alpha;
% set the number of iterations
n = 1500;
% number of training examples
m = length(y);
% initialize the theta_new vector
l = length(theta);
theta_new = zeros(l,1);
% initialize the cost vector
J_cost = zeros(n,1);
% initialize the vector to store all the calculated theta values
theta_all = zeros(n,2);
% perform gradient descent for the specified number of iterations
for i = 1 : n
% calculate the hypothesis
hypothesis = X * theta;
% calculate the error
err = hypothesis - y;
% calculate the gradient
grad = X' * err;
% calculate the new theta
theta_new = (learn_rate/m) .* grad;
% update the old theta
theta = theta - theta_new;
% update the cost
J_cost(i) = computeCost(X, y, theta);
% store the calculated theta value
if i < n
index = i + 1;
theta_all(index,:) = theta';
end
end
Link to the dataset can be found here
The filename is ex1data1.txt
ISSUES
For initial theta = [0, 0] (this is a vector!), learning rate of 0.01 and running this for 1500 iterations I get the optimal theta as :
theta0 = -3.6303
theta1 = 1.1664
The above is the output for the vectorized implementation which I know I have implemented correctly (it passed all the test cases on Coursera).
However, when I implemented the same algorithm using the iterative method (1st code I mentioned) the theta values I get are (alpha = 0.01, iterations = 1500):
theta0 = -0.20720
theta1 = -0.77392
This implementation fails to pass the test cases and I know therefore that the implementation is incorrect.
I am however unable to understand where I am going wrong as the iterative code does the same job, same multiplications as the vectorized one and when I tried to trace the output of 1 iteration of both the codes, the values came same (on pen and paper!) but failed when I ran them on Octave.
Any help regarding this would be of great help especially if you could point out where I went wrong and what exactly was the cause of failure.
Points to consider
The implementation of hypothesis is correct as I tested it out and both the codes gave the same results, so no issues here.
I printed the output of the gradient vector in both the codes and realised that the error lies here because the outputs here were very different!
Additionally, here is the code for pre-processing the data :
function[X, y] = fileReader(filename)
% load the dataset
dataset = load(filename);
% get the dimensions of the dataset
nrows = size(dataset, 1);
ncols = size(dataset, 2);
% generate the X matrix from the dataset
X = dataset(:, 1 : ncols - 1);
% generate the y vector
y = dataset(:, ncols);
% append 1's to the X matrix
X = [ones(nrows, 1), X];
end
What is going wrong with the first code is that the theta_temp and the h vectors are not being initialised properly. For the very first iteration (when count value equals 1) your code runs properly because for that particular iteration the the h and the theta_temp vectors have been initialised to 0 properly. However, since these are temporary vectors for each iteration of gradient descent, they have not been initialised to 0 vectors again for the subsequent iterations. That is, for iteration 2, the values that are modified into h(i) and theta_temp(i) are just added to the old values. Hence because of that, the code does not work properly. You need to update the vectors as zero vectors at the beginning of each iteration and then they would work correctly. Here is my implementation of your code (the first one, observe the changes) :
function [theta] = gradientDescent_i(X, y, theta, alpha, iterations)
% get the number of rows and columns
nrows = size(X, 1);
ncols = size(X, 2);
% run gradient descent for the specified number of iterations
count = 1;
while count <= iterations
% initialize the hypothesis vector
h = zeros(nrows, 1);
% initialize the temporary theta vector
theta_temp = zeros(ncols, 1);
% calculate the hypothesis values and fill into the vector
for i = 1 : nrows
for j = 1 : ncols
term = theta(j) * X(i, j);
h(i) = h(i) + term;
end
end
% calculate the gradient
for j = 1 : ncols
for i = 1 : nrows
term = (h(i) - y(i)) * X(i, j);
theta_temp(j) = theta_temp(j) + term;
end
end
% update the gradient with the factor
fact = alpha / nrows;
for i = 1 : ncols
theta_temp(i) = fact * theta_temp(i);
end
% update the theta
for i = 1 : ncols
theta(i) = theta(i) - theta_temp(i);
end
% update the count
count += 1;
end
end
I ran the code and it gave the same values of theta which you have mentioned. However, what I wonder is how did you state that the output of hypothesis vector was the same in both cases where clearly, this was one of the reasons for the first code failing!
I am trying to find the coefficients in an equation to model the step response of a motor which is of the form 1-e^x. The equation I'm using to model is of the form
a(1)*t^2 + a(2)*t^3 + a(3)*t^3 + ...
(It is derived in a research paper used to solve for motor parameters)
Sometimes using fminunc to find the coefficients works out okay, and I get a good result, and it matches the training data fairly well. Other times the returned coefficients are horrible (going extremely higher than what the output should be and is orders of magnitude off). This especially happens once I started using higher order terms: using any model that uses x^8 or higher (x^9, x^10, x^11, etc.) always produces bad results.
Since it works sometimes, I can't think why my implementation would be wrong. I have tried fminunc while providing the gradients and while also not providing the gradients yet there is no difference. I've looked into using other functions to solve for the coefficients, like polyfit, but in that instance it has to have terms that are raised from 1 to the highest order term, but the model I'm using has its lowest power at 2.
Here is the main code:
clear;
%Overall Constants
max_power = 7;
%Loads in data
%data = load('TestData.txt');
load testdata.mat
%Sets data into variables
indep_x = data(:,1); Y = data(:,2);
%number of data points
m = length(Y);
%X is a matrix with the independant variable
exps = [2:max_power];
X_prime = repmat(indep_x, 1, max_power-1); %Repeats columns of the indep var
X = bsxfun(#power, X_prime, exps);
%Initializes theta to rand vals
init_theta = rand(max_power-1,1);
%Sets up options for fminunc
options = optimset( 'MaxIter', 400, 'Algorithm', 'quasi-newton');
%fminunc minimizes the output of the cost function by changing the theta paramaeters
[theta, cost] = fminunc(#(t)(costFunction(t, X, Y)), init_theta, options)
%
Y_line = X * theta;
figure;
hold on; plot(indep_x, Y, 'or');
hold on; plot(indep_x, Y_line, 'bx');
And here is costFunction:
function [J, Grad] = costFunction (theta, X, Y)
%# of training examples
m = length(Y);
%Initialize Cost and Grad-Vector
J = 0;
Grad = zeros(size(theta));
%Poduces an output based off the current values of theta
model_output = X * theta;
%Computes the squared error for each example then adds them to get the total error
squared_error = (model_output - Y).^2;
J = (1/(2*m)) * sum(squared_error);
%Computes the gradients for each theta t
for t = 1:size(theta, 1)
Grad(t) = (1/m) * sum((model_output-Y) .* X(:, t));
end
endfunction
Any help or advice would be appreciated.
Try adding regularization to your costFunction:
function [J, Grad] = costFunction (theta, X, Y, lambda)
m = length(Y);
%Initialize Cost and Grad-Vector
J = 0;
Grad = zeros(size(theta));
%Poduces an output based off the current values of theta
model_output = X * theta;
%Computes the squared error for each example then adds them to get the total error
squared_error = (model_output - Y).^2;
J = (1/(2*m)) * sum(squared_error);
% Regularization
J = J + lambda*sum(theta(2:end).^2)/(2*m);
%Computes the gradients for each theta t
regularizator = lambda*theta/m;
% overwrite 1st element i.e the one corresponding to theta zero
regularizator(1) = 0;
for t = 1:size(theta, 1)
Grad(t) = (1/m) * sum((model_output-Y) .* X(:, t)) + regularizator(t);
end
endfunction
The regularization term lambda is used to control the learning rate. Start with lambda=1. The grater the value for lambda, the slower the learning will occur. Increase lambda if the behavior you describe persists. You may need to increase the number of iterations if lambda gets high.
You may also consider normalization of your data, and some heuristic for initializing theta - setting all theta to 0.1 may be better than random. If nothing else it'll provide better reproducibility from training to training.
I'm new with Matlab and Machine Learning and I tried to make a gradient descent function without using matrix.
m is the number of example on my training set
n is the number of feature for each example
The function gradientDescentMulti takes 5 arguments:
X mxn Matrix
y m-dimensional vector
theta : n-dimensional vector
alpha : a real number
nb_iters : a real number
I already have a solution using matrix multiplication
function theta = gradientDescentMulti(X, y, theta, alpha, num_iters)
for iter = 1:num_iters
gradJ = 1/m * (X'*X*theta - X'*y);
theta = theta - alpha * gradJ;
end
end
The result after iterations:
theta =
1.0e+05 *
3.3430
1.0009
0.0367
But now, I tried to do the same without matrix multiplication, this is the function:
function theta = gradientDescentMulti(X, y, theta, alpha, num_iters)
m = length(y); % number of training examples
n = size(X, 2); % number of features
for iter = 1:num_iters
new_theta = zeros(1, n);
%// for each feature, found the new theta
for t = 1:n
S = 0;
for example = 1:m
h = 0;
for example_feature = 1:n
h = h + (theta(example_feature) * X(example, example_feature));
end
S = S + ((h - y(example)) * X(example, n)); %// Sum each feature for this example
end
new_theta(t) = theta(t) - alpha * (1/m) * S; %// Calculate new theta for this example
end
%// only at the end of the function, update all theta simultaneously
theta = new_theta'; %// Transpose new_theta (horizontal vector) to theta (vertical vector)
end
end
The result, all the theta are the same :/
theta =
1.0e+04 *
3.5374
3.5374
3.5374
If you look at the gradient update rule, it may be more efficient to actually compute the hypothesis of all of your training examples first, then subtract this with the ground truth value of each training example and store these into an array or vector. Once you do this, you can then compute the update rule very easily. To me, it doesn't appear that you're doing this in your code.
As such, I rewrote the code, but I have a separate array that stores the difference in the hypothesis of each training example and ground truth value. Once I do this, I compute the update rule for each feature separately:
for iter = 1 : num_iters
%// Compute hypothesis differences with ground truth first
h = zeros(1, m);
for t = 1 : m
%// Compute hypothesis
for tt = 1 : n
h(t) = h(t) + theta(tt)*X(t,tt);
end
%// Compute difference between hypothesis and ground truth
h(t) = h(t) - y(t);
end
%// Now update parameters
new_theta = zeros(1, n);
%// for each feature, find the new theta
for tt = 1 : n
S = 0;
%// For each sample, compute products of hypothesis difference
%// and the right feature of the sample and accumulate
for t = 1 : m
S = S + h(t)*X(t,tt);
end
%// Compute gradient descent step
new_theta(tt) = theta(tt) - (alpha/m)*S;
end
theta = new_theta'; %// Transpose new_theta (horizontal vector) to theta (vertical vector)
end
When I do this, I get the same answers as using the matrix formulation.