Is Implicit messaging guarantees message delivery in Ethernet/IP - ethernet

Do we have a guaranteed delivery of the message sent via Implicit messaging in Ethernet/IP?
Implicit messaging uses UDP, so my guess is no, but this seems strange given that Implicit messaging is used for real-time control, so I wonder maybe Ethernet/IP provides guaranteed delivery on top of UDP?
If no, should I implement something on top of it? We do not care much about real-time thing, but we need a guaranteed delivery and we are forced to use implicit messaging

This article gives a good overview of it. UDP is faster than using a connection oriented transport and can be multicast which makes it a pretty good fit. Reliablility however is it's drawback.
If data is updating frequently this isn't such a problem. In other applications I've used PGM on top of this for the reliability. But this was for PC to PC comms.
I'm assuming that CIP Safety must use something similar.

No, there is no guarenteed delivery. If a device along the route decides to drop all the UDP packets, they will not be delivered. The connection will then close due to a receive timeout. This timeout is specified by means of a CIP timeout multiplier which defines the maximum allowed number of frame losses in a sequence. The minimum ist four.
Regarding the term "Real Time", you have to distinguish between hard realtime systems and soft realtime systems. EtherNet/IP is definetly soft-realtime, meaning that those systems are typically correct, i.e. delivering in due time. There is no guarantee that the data will be available within a certain time at the peer as in a hard-realtime network.
Safety requirements in this domain are often covered by redundancy, plausibility checks and fail safe states.

Related

CAN Communication: Good Practices

I am preparing to write some code for a master controller that communicates (via CANbus) with multiple nodes in a product. Each node monitors its own sensors (i.e. voltages, currents, fault flags, etc.) and can be started/stopped by the master controller. The master controller also sends the data to a display.
I am using an STM32H7B3I-EVAL board and using the STM32CubeIDE environment to write the code. I am trying to determine some good practices for writing this code, but I am inexperienced in CAN communication. I wanted to get people's opinions on the following high-level questions:
If we want to be constantly monitoring, should all the code for transmitting and receiving data be in a never-ending while loop?
Is it better to transmit all data then receive all data, or transmit data when needed and have an interrupt for received messages?
What are the pros/cons in using an RXBUFFER vs RXFIFO?
First of all, you need to invent an application tier CAN protocol unless you have one already. This isn't entirely trivial and requires some experience of CAN. Here you first of all need to take bus load in account, which in turn depends on the amounts of nodes and data allowed, as well as the baudrate. How to design this also depends on if it's a control system (hard realtime, milliseconds) or just some industrial sensor network (hundreds of milliseconds or seconds).
If we want to be constantly monitoring, should all the code for transmitting and receiving data be in a never-ending while loop?
Probably not. Regarding RX, depending on what CAN controller you have, there will at least be some manner of RX FIFO. Modern controllers also support dedicated "mailbox" slots for individual messages, which is more powerful and easier to work with. Your only requirement for never losing data is that you empty the FIFO at least as often as FIFO size times the time it takes to send the minimum package size (DLC=0). Unless your program is very busy, this is usually not a tough realtime deadline to meet.
Regarding TX, again it depends on the controller, but here it is usually sufficient to see that the previously send message has been send before attempting a new one. And unless you are really competing hard for bus access during a time of heavy bus load, this shouldn't be happening. Sensible CAN application protocols have some simple scheduling requirements such as "this gets sent after x ms in relation to that". Re-sending messages lost due to errors is handled by the controller hardware.
Is it better to transmit all data then receive all data, or transmit data when needed and have an interrupt for received messages?
TX and RX buffers work independently of each other. Also what you are saying doesn't really make sense, since CAN is semi-duplex and one node's TX is another node's RX.
What are the pros/cons in using an RXBUFFER vs RXFIFO?
Those terms are pretty much synonymous. I suppose they may have some special meaning given a specific CAN controller, but you don't mention one (STM32 have several, one old and really bad "bxCAN" and one newer which I don't know much about. And some stubbornly insist on the horrible solution of using external controllers, particularly the Arduino kids).
Anyway, it is better to have neither, using a CAN controller with mailboxes is the best option. Unless the amount of expected identifiers are more than you have mailbox slots - in that case you have to direct low priority messages to a RX FIFO and use mailbox slots for high priority messages.

Is UDP always unreliable?

I'm about to re-architect a real-time system that has been prototyped on a single node and specify how it should be scaled up to multiple nodes (probably never more than 20 of them in any one LAN). Some of the functionality will multiply on a per-node basis, and some of it will remain centralised on a one-per-system basis. There is going to be a need for communication between each node and that central unit (possibly a master node), but not between individual nodes.
Due to the real-time demands of the system, UDP is something that should be considered for that communication. But... it is almost always described as unreliable. Is this always the case? Does it not depend on the scale of the network, the data load on the network and the way the protocol is used?
For example, suppose I have a central unit which regularly polls through each node by addressing a UDP message to it, and each node immediately responds with its data via UDP. There is no other communication on the (isolated) network. Suppose there is also some mechanism to ensure there are never any collisions (e.g. all nodes have a maximum transmission length for their responses to a poll message, and the latencies are nailed down to known levels). Is there any (hidden) reason in a simple and structured network like this that you would ever fail to transmit/receive every last UDP packet and have near 100% reliability?
EDIT: the detail of this question suffers from confusion around what "unreliable" means, and whether it is intended to apply only to UDP, or to the system in which UDP is employed. I have chosen to leave this confusion in the question, because looking back over a lot of material on UDP, I can see that this confusion might be very common, and that answers which highlight that confusion and overcome it might be valuable.
The key is, UDP does not make any guarantees. There are many reasons why datagrams might go undelivered:
Sender host buffers fill up
Cosmic rays flip bits somewhere along the way, causing a checksum mismatch and the datagram to be discarded
Electromagnetic interference corrupts the signal momentarily
A network cable gets unplugged for a moment
A hub or switch loses power for a moment
A switch's buffers fill up
Receiving host buffers fill up
If any of these things (or many others) occurs, a datagram may go undelivered. UDP will make no attempt to detect this or to re-deliver it.
Yes. Every layer is potentially unreliable, starting with the electrical signalling across your Ethernet cable. (Ever jostled one of those plugs? You can see it in Wireshark logs.) Collisions are virtually impossible to avoid. And in case of congestion, your protocol stack may decide to drop UDP packets.
But all that's rather beside the point. UDP is unreliable, but that doesn't mean it can't be relied on. Plenty of mission-critical applications run over UDP. You just need to understand the unreliability and account for it.
Unreliable does not mean it will definitely fail. It only means that it does not care about transport problems and thus will not make any guarantees that transmission will be successful. Let's compare some aspects of UDP against TCP.
UDP is packet based, TCP stream based. This has not much to do with reliability.
Packets may arrive in a different order than they were sent. UDP does not care and will deliver the packets in this order to the application. In TCP data have a sequence number so the receivers operating system will detect reordering and forward the data to the application in the correct order. This usually does not matter when you have a direct connection between client and server, but might happen in wide networks like the internet.
Packets may get lost due to router or switch congestion or overload of the senders or receiving system or others. This might also happen in local networks with heavy traffic or if the receiver system is unable to cope with the amount of data, even for a short time. With UDP the data will be lost. TCP instead will detect lost packets and retransmit them and even slow down the traffic to adapt to what speed network and endpoints can handle and thus loose less packets in the future.
Packets might get duplicated. Again TCP will detect this due to the sequence number but UDP will not and thus transmit the duplicate packet to the application.
Packets might get corrupted. Both TCP and UDP have the same kind of checksum to detect small errors, but will not detect larger errors.
Applications using UDP usually does not need the reliability of TCP or don't need all of this. For instance with real time audio and video packet loss is acceptable but duplicates and reordering is not. Thus the RTP protocol contains its own sequence number (timestamp) to detect this case. Also, RTP is often accompanied by the RTCP protocol to send statistics about packet loss back to the peer and thus make adaption of connection speed possible.
If you want reliable UDP, try looking at ENet library.
http://enet.bespin.org/
Unreliability with regard to UDP is different from unreliability in general. Also, UDP and alternatives to it (e.g. TCP) are always only ever components or single layers in a wider system. This can lead to some confusion about what "unreliable" means.
UDP is a transport layer network protocol. The transport layer is responsible for getting data from one point on the network to another specific point on the network. In that context, UDP is described as an "unreliable" protocol because it makes no guarantees about whether the data sent will actually arrive. In contrast, TCP is a "reliable" transport layer protocol because if data goes missing or is corrupted the first time it is sent, the protocol itself has mechanisms to resend the data and ensure it arrives... eventually.
But UDP is not some sloppy "maybe, maybe not - let me think about it and screw you around" protocol. It does what it is specified to do, and is reliable (general sense) at doing it... as well as reliable (general sense) in failing in predictable ways. If you take these failure modes into account elsewhere, UDP can be a component of an overall very reliable system.
For example, by restricting network topology and using UDP to transport higher level protocols, the GigE Vision standard specifies a highly reliable system with high data transfer rates and real-time response whose transport level communications is dominated by UDP traffic.
Historically, the major source of unreliable packet transport was packet collisions due to two sources attempting to transmit simultaneously on a single channel. In modern networks, each node is typically connected on a full duplex link to a network switch, making collisions impossible on that link, and consequently making modern networks much more reliable (in all senses) than was the case when UDP was first designed.
No networking technology currently available can be made 100% reliable... but let's be practical rather than pedantic, because potential unreliability and actual unreliability are a lot like shark attacks - they tend to occur far more in people's minds than in reality.
Some material on UDP makes it sound almost like the people who designed UDP did it just to annoy people - that unreliability was deliberately engineered in. This is not the case, and it is unhelpful to think of it in these terms. It is far better to focus on what UDP does and does not do in comparison to alternatives (e.g. see this comparison between TCP and UDP... which nonetheless lists "unreliability" as a key feature of UDP).
In reality, when there is data to be transmitted, that can be transmitted, it is transmitted; when there is data that can be received, it is received. Likewise, if you transmit packets 1, 2 then 3 directly to an endpoint, they will almost certainly be received as packets 1, 2 and 3 in order (assuming no failures in lower network layers, and that incoming data is buffered in a FIFO as is customary, but not mandatory). You can get a lot of reliability out of this, depending on how you use it.
However, if you transmit packets via multiple routes, all bets are off - "unreliability" of packet order can occur. And if you flood the available buffers, unreliability via dropping packets will occur. And if you allow nodes to transmit at any time (asynchronous), then you will get unreliability through packet collisions. But in the "simple and structured" (and also small and synchronous) LAN described, you may be able to either avoid this, or detect its occurrence (e.g. by sending an incrementing counter value in each packet), which will let you compensate in an application-specific way.
In cases where the power goes off (perhaps momentarily), or cosmic rays strike, or people trip on loose cables causing an unacceptable level of "unreliability"... then don't blame UDP - blame the engineer(s) whose design left the system susceptible to these things.
All things considered, in the LAN described, you might reasonably expect to be able to engineer a system based on UDP so as to never lose more than one packet in every few million, or billion, or even astronomically better than this - but it will depend on specifics, and only you can know if your application can tolerate the quantity and quality of unreliable comms that results in your case.

What are the required mechanisms for a reliable layer over UDP?

I've been working on writing my own networking engine for my own game development side projects. This requires the options of having unreliable, reliable, and ordered reliable messages. I have not, however, been able to identify all of the mechanisms necessary for reliable and ordered reliable protocols.
What are the required mechanisms for a reliable layer over UDP? Additional details are appreciated.
So far, I gather that these are requirements:
Acknowledge received messages with a sequence number.
Resend unacknowledged messages after a retransmission time expires.
Track round trip times for each destination in order to calculate an appropriate retransmission time.
Identify and remove duplicate packets.
Handle overflowing sequence numbers looping around.
This has influenced my architecture to have reliable message headers with sequences and timestamps, acknowledge messages that echo a received sequence and timestamp, a system for tracking appropriate retransmission times based on address, and a thread that a) receives messages and queues them for user receipt, b) acknowledges reliable messages, and c) retransmits unacknowledged messages with expired retransmission timers.
NOTE:
Reliable UDP is not the same as TCP. Even ordered reliable UDP is not the same as TCP. I am not secretly unaware that I really want TCP. Also, before someone plays the semantics games, yes... reliable UDP is an "oxymoron". This is a layer over UDP that makes for reliable delivery.
You might like to take a look at the answers to this question: What do you use when you need reliable UDP?
I'd add 'flow control' to your list. You want to be able to control the amount of data you're sending on a particular link depending on the round trip time's you're getting or you'll flood the link and just be throwing datagrams away.
Note that depending on the overall protocol, it might be possible to dispense with retransmission timers. See, for example, the Quake 3 network protocol.
In Q3 reliable packets are simply sent until an ack is seen.
Why are you trying to re-invent TCP? It provides all of the features you originally stated, and has been show to work well.
EDIT - Since your comments show that you have additional requirements not originally stated, you should consider whether a hybrid model using multiple sockets would be better than trying to fulfill all of those criteria in a single application-layer protocol.
Actually it seems that what you really need is SCTP.
SCTP supports:
message based (rather than byte stream) transmissions
multiple streams over a single netsock socket
ordered or unordered receipt of packets
... message ordering is optional in SCTP; a receiving application may choose to process messages in the order they are received instead of the order they were sent

I'm writing an application that implements a questionnaire. Does qualify as being a real-time application?

Keeping it simple, I have a server and client. The server sends questions one by one and the client the answers, as soon as they are given.
So, would you say this application is real time?
Based on this quote from wikipedia, which summarizes my understand of what a real-time application is:
"A system is said to be real-time if the total correctness of an operation depends not
only upon its logical correctness, but also upon the time in which it is performed. The classical conception is that in a hard real-time or immediate real-time system, the completion of an operation after its deadline is considered useless - ultimately, this may cause a critical failure of the complete system. A soft real-time system on the other hand will tolerate such lateness, and may respond with decreased service quality (e.g., omitting frames while displaying a video)."
I would say no, it is not real-time.
No, Real-time systems are ones where the OS/Application has to respond to the environment within a known period, for example an embedded flight control system on a fighter jet.
Wikipedia has a fairly good article on Real-time computing.
If you are using for the communication a protocol like TCP/IP, that isnt realtime system, because these communication link are not by nature deterministic in matter of response time, the only sure thing is that the message will arrive, when? who knows...

What do you use when you need reliable UDP?

If you have a situation where a TCP connection is potentially too slow and a UDP 'connection' is potentially too unreliable what do you use? There are various standard reliable UDP protocols out there, what experiences do you have with them?
Please discuss one protocol per reply and if someone else has already mentioned the one you use then consider voting them up and using a comment to elaborate if required.
I'm interested in the various options here, of which TCP is at one end of the scale and UDP is at the other. Various reliable UDP options are available and each brings some elements of TCP to UDP.
I know that often TCP is the correct choice but having a list of the alternatives is often useful in helping one come to that conclusion. Things like Enet, RUDP, etc that are built on UDP have various pros and cons, have you used them, what are your experiences?
For the avoidance of doubt there is no more information, this is a hypothetical question and one that I hoped would elicit a list of responses that detailed the various options and alternatives available to someone who needs to make a decision.
What about SCTP. It's a standard protocol by the IETF (RFC 4960)
It has chunking capability which could help for speed.
Update: a comparison between TCP and SCTP shows that the performances are comparable unless two interfaces can be used.
Update: a nice introductory article.
It's difficult to answer this question without some additional information on the domain of the problem.
For example, what volume of data are you using? How often? What is the nature of the data? (eg. is it unique, one off data? Or is it a stream of sample data? etc.)
What platform are you developing for? (eg. desktop/server/embedded)
To determine what you mean by "too slow", what network medium are you using?
But in (very!) general terms I think you're going to have to try really hard to beat tcp for speed, unless you can make some hard assumptions about the data that you're trying to send.
For example, if the data that you're trying to send is such that you can tolerate the loss of a single packet (eg. regularly sampled data where the sampling rate is many times higher than the bandwidth of the signal) then you can probably sacrifice some reliability of transmission by ensuring that you can detect data corruption (eg. through the use of a good crc)
But if you cannot tolerate the loss of a single packet, then you're going to have to start introducing the types of techniques for reliability that tcp already has. And, without putting in a reasonable amount of work, you may find that you're starting to build those elements into a user-space solution with all of the inherent speed issues to go with it.
ENET - http://enet.bespin.org/
I've worked with ENET as a reliable UDP protocol and written an asynchronous sockets friendly version for a client of mine who is using it in their servers. It works quite nicely but I don't like the overhead that the peer to peer ping adds to otherwise idle connections; when you have lots of connections pinging all of them regularly is a lot of busy work.
ENET gives you the option to send multiple 'channels' of data and for the data sent to be unreliable, reliable or sequenced. It also includes the aforementioned peer to peer ping which acts as a keep alive.
We have some defense industry customers that use UDT (UDP-based Data Transfer) (see http://udt.sourceforge.net/) and are very happy with it. I see that is has a friendly BSD license as well.
Anyone who decides that the list above isn't enough and that they want to develop their OWN reliable UDP should definitely take a look at the Google QUIC spec as this covers lots of complicated corner cases and potential denial of service attacks. I haven't played with an implementation of this yet, and you may not want or need everything that it provides, but the document is well worth reading before embarking on a new "reliable" UDP design.
A good jumping off point for QUIC is here, over at the Chromium Blog.
The current QUIC design document can be found here.
RUDP - Reliable User Datagram Protocol
This provides:
Acknowledgment of received packets
Windowing and congestion control
Retransmission of lost packets
Overbuffering (Faster than real-time streaming)
It seems slightly more configurable with regards to keep alives then ENet but it doesn't give you as many options (i.e. all data is reliable and sequenced not just the bits that you decide should be). It looks fairly straight forward to implement.
As others have pointed out, your question is very general, and whether or not something is 'faster' than TCP depends a lot on the type of application.
TCP is generally as fast as it gets for reliable streaming of data from one host to another. However, if your application does a lot of small bursts of traffic and waiting for responses, UDP may be more appropriate to minimize latency.
There is an easy middle ground. Nagle's algorithm is the part of TCP that helps ensure that the sender doesn't overwhelm the receiver of a large stream of data, resulting in congestion and packet loss.
If you need the reliable, in-order delivery of TCP, and also the fast response of UDP, and don't need to worry about congestion from sending large streams of data, you can disable Nagle's algorithm:
int opt = -1;
if (setsockopt(sock_fd, IPPROTO_TCP, TCP_NODELAY, (char *)&opt, sizeof(opt)))
printf("Error disabling Nagle's algorithm.\n");
If you have a situation where a TCP connection is potentially too slow and a UDP 'connection' is potentially too unreliable what do you use? There are various standard reliable UDP protocols out there, what experiences do you have with them?
The key word in your sentence is 'potentially'. I think you really need to prove to yourself that TCP is, in fact, too slow for your needs if you need reliability in your protocol.
If you want to get reliability out of UDP then you're basically going to be re-implementing some of TCP's features on top of UDP which will probably make things slower than just using TCP in the first place.
Protocol DCCP, standardized in RFC 4340, "Datagram Congestion Control Protocol" may be what you are looking for.
It seems implemented in Linux.
May be RFC 5405, "Unicast UDP Usage Guidelines for Application Designers" will be useful for you.
RUDP. Many socket servers for games implement something similar.
Did you consider compressing your data ?
As stated above, we lack information about the exact nature of your problem, but compressing the data to transport them could help.
It is hard to give a universal answer to the question but the best way is probably not to stay on the line "between TCP and UDP" but rather to go sideways :).
A bit more detailed explanation:
If an application needs to get a confirmation response for every piece of data it transmits then TCP is pretty much as fast as it gets (especially if your messages are much smaller than optimal MTU for your connection) and if you need to send periodic data that gets expired the moment you send it out then raw UDP is the best choice for many reasons but not particularly for speed as well.
Reliability is a more complex question, it is somewhat relative in both cases and it always depends on a specific application. For a simple example if you unplug the internet cable from your router then good luck keeping reliably delivering anything with TCP. And what even worse is that if you don't do something about it in your code then your OS will most likely just block your application for a couple of minutes before indicating an error and in many cases this delay is just not acceptable as well.
So the question with conventional network protocols is generally not really about speed or reliability but rather about convenience. It is about getting some features of TCP (automatic congestion control, automatic transmission unit size adjustment, automatic retransmission, basic connection management, ...) while also getting at least some of the important and useful features it misses (message boundaries - the most important one, connection quality monitoring, multiple streams within a connection, etc) and not having to implement it yourself.
From my point of view SCTP now looks like the best universal choice but it is not very popular and the only realistic way to reliably pass it across the Internet of today is still to wrap it inside UDP (probably using sctplib). It is also still a relatively basic and compact solution and for some applications it may still be not sufficient by itself.
As for the more advanced options, in some of the projects we used ZeroMQ and it worked just fine. This is a much more of a complete solution, not just a network protocol (under the hood it supports TCP, UDP, a couple of higher level protocols and some local IPC mechanisms to actually deliver messages). Since a couple of releases its initial developer has switched his attention to his new NanoMSG and currently the newest NNG libraries. It is not as thoroughly developed and tested and it is not very popular but someday it may change. If you don't mind the CPU overhead and some network bandwidth loss then some of the libraries might work for you. There are some other network-oriented message exchange libraries available as well.
You should check MoldUDP, which has been around for decades and it is used by Nasdaq's ITCH market data feed. Our messaging system CoralSequencer uses it to implement a reliable multicast event-stream from a central process.
Disclaimer: I'm one of the developers of CoralSequencer
The best way to achieve reliability using UDP is to build the reliability in the application program itself( for example, by adding acknowledgment and retransmission mechanisms)