How do I configure the FAIR scheduler with Spark-Jobserver? - spark-jobserver

When I post simultaneous jobserver requests, they always seem to be processed in FIFO mode. This is despite my best efforts to enable the FAIR scheduler. How can I ensure that my requests are always processed in parallel?
Background: On my cluster there is one SparkContext to which users can post requests to process data. Each request may act on a different chunk of data but the operations are always the same. A small one-minute job should not have to wait for a large one-hour job to finish.
Intuitively I would expect the following to happen (see my configuration below):
The context runs within a FAIR pool. Every time a user sends a request to process some data, Spark should split up the fair pool and give a fraction of the cluster resources to process that new request. Each request is then run in FIFO mode parallel to any other concurrent requests.
Here's what actually happens when I run simultaneous jobs:
The interface says "1 Fair Scheduler Pools" and it lists one active (FIFO) pool named "default." It seems that everything is executing within the same FIFO pool, which itself is running alone within the FAIR pool. I can see that my fair pool details are loaded correctly on Spark's Environment page, but my requests are all processed in FIFO fashion.
How do I configure my environment/application so that every request actually runs in parallel to others? Do I need to create a separate context for each request? Do I create an arbitrary number of identical FIFO pools within my FAIR pool and then somehow pick an empty pool every time a request is made? Considering the objectives of Jobserver, it seems like this should all be automatic and not very complicated to set up. Below are some details from my configuration in case I've made a simple mistake.
From local.conf:
contexts {
mycontext {
spark.scheduler.mode = FAIR
spark.scheduler.allocation file = /home/spark/job-server-1.6.0/scheduler.xml
spark.scheduler.pool = fair_pool
}
}
From scheduler.xml:
<?xml version="1.0"?>
<allocations>
<pool name="fair_pool">
<schedulingMode>FAIR</schedulingMode>
<weight>1</weight>
</pool>
</allocations>
Thanks for any ideas or pointers. Sorry for any confusion with terminology - the word "job" has two meanings in jobserver.

I was looking at my configuration and found that
spark.scheduler.allocation file should be spark.scheduler.allocation.file
and all the values are quoted like
contexts {
mycontext {
spark.scheduler.mode = "FAIR"
spark.scheduler.allocation.file = "/home/spark/job-server-1.6.0/scheduler.xml"
spark.scheduler.pool = "fair_pool"
}
}
Also ensure that mycontext is created and you are passing mycontext when submitting a job.
You can verify whether mycontext is using FAIR scheduler using Spark Master UI also.

Related

How to configure channels and AMQ for spring-batch-integration where all steps are run as slaves on another cluster member

Followup to Configuration of MessageChannelPartitionHandler for assortment of remote steps
Even though the first question was answered (I think well), I think I'm confused enough that I'm not able to ask the right questions. Please direct me if you can.
Here is a sketch of the architecture I am attempting to build. Today, we have a job that runs a step across the cluster that works. We want to extend the architecture to run n (unbounded and different) jobs with n (unbounded and different) remote steps across the cluster.
I am not confusing job executions and job instances with jobs. We already run multiple job instances across the cluster. We need to be able to run other processes that are scalable in hte same way as the one we have defined already.
The source data is all coming from database which are known to the steps. The partitioner is defining the range of data for the "where" clause in the source database and putting that in the stepContext. All of the actual work happens in the stepContext. The jobContext simply serves to spawn steps, wait for completion, and provide the control API.
There will be 0 to n jobs running concurrently, with 0 to n steps from however many jobs running on the slave VM's concurrently.
Does each master job (or step?) require its own request and reply channel, and by extension its own OutboundChannelAdapter? Or are the request and reply channels shared?
Does each master job (or step?) require its own aggregator? By implication this means each job (or step) will have its own partition handler (which may be supported by the existing codebase)
The StepLocator on the slave appears to require a single shared replyChannel across all steps, but it appears to me that the messageChannelpartitionHandler requires a separate reply channel per step.
What I think is unclear (but I can't tell since it's unclear) is how the single reply channel is picked up by the aggregatedReplyChannel and then returned to the correct step. Of course I could be so lost I'm asking the wrong questions.
Thank you in advance
Does each master job (or step?) require its own request and reply channel, and by extension its own OutboundChannelAdapter? Or are the request and reply channels shared?
No, there is no need for that. StepExecutionRequests are identified with a correlation Id that makes it possible to distinguish them.
Does each master job (or step?) require its own aggregator? By implication this means each job (or step) will have its own partition handler (which may be supported by the existing codebase)
That should not be the case, as requests are uniquely identified with a correlation ID (similar to the previous point).
The StepLocator on the slave appears to require a single shared replyChannel across all steps, but it appears to me that the messageChannelpartitionHandler requires a separate reply channel per step.
The messageChannelpartitionHandler should be step or job scoped, as mentioned in the Javadoc (see recommendation in the last note). As a side note, there was an issue with message crossing in a previous version due to the reply channel being instance based, but it was fixed here.

Uber Cadence task list management

We are using Uber Cadence and periodically we run into issues on the production environment.
The setup is the following:
One Java 14 BE with Cadence client 2.7.5
Cadence service version 0.14.1 with Postgres DB
There are multiple domains, for all domains the single BE server is registered as a worker.
What is visible in the logs is that sometimes during a query the cadence seems to lose stickiness to the BE service:
"msg":"query direct through matching failed on sticky, clearing sticky before attempting on non-sticky","service":"cadence-history","shard-id":1,"address":"10.1.1.111:7934"
"msg":"query directly though matching on non-sticky failed","service":"cadence-history","shard-id":1,"address":"10.1.1.111:7934"..."error":"code:deadline-exceeded message:timeout"
"msg":"query directly though matching on non-sticky failed","service":"cadence-history","shard-id":1,"address":"10.1.1.111:7934"..."error":"code:deadline-exceeded message:timeout"
"msg":"query directly though matching on non-sticky failed","service":"cadence-history","shard-id":1,"address":"10.1.1.111:7934"..."error":"code:deadline-exceeded message:timeout"
"msg":"query directly though matching on non-sticky failed","service":"cadence-history","shard-id":1,"address":"10.1.1.111:7934"..."error":"code:deadline-exceeded message:timeout"
...
In the backend in the meanwhile nothing is visible. However, during this time if I check the pollers on the cadence web client I see that the task list is there, but it is not considered as a decision handler any more (http://localhost:8088/domains/mydomain/task-lists/mytasklist/pollers). Because of this pretty much the whole environment is dead because there is nothing that can progress with the decision. The only option is to restart the backend service and let it re-register as a worker.
At this point the investigation is stuck, so some help would be appreciated.
Does anyone know about how a worker or task list can lose its ability to be a decision handler? Is it managed by cadence, like based on how many errors the worker generates? I was not able to find anything about this.
As I understand when the stickiness is lost, cadence will check for another worker to replay the workflow and continue it (in my case this will be the same worker as there is only one). Is it possible that replaying the flow is not possible (although I think it would generate something in the backend log from the cadence client) or at that point the worker is already removed from the list and that causes the time-out?
Any help would be more than welcome! Thanks!
Does anyone know about how a worker or task list can lose its ability to be a decision handler
This will happen when worker stops polling for decision tasks. For example if you configure the worker only polls for activity tasks, then it will show like that. So apparently it will also happen if for some reason the worker stops polling for decision tasks.
As I understand when the stickiness is lost, cadence will check for another worker to replay the workflow and continue
Yes, as long as there is another worker polling for decision tasks. Note that Query tasks is considered as of the the decision task types. (this is a wrong design, we are working on to separate it).
From your logs:
"msg":"query directly though matching on non-sticky failed","service":"cadence-history","shard-id":1,"address":"10.1.1.111:7934"..."error":"code:deadline-exceeded message:timeout"
This means that Cadence dispatch the Query tasks to a worker, and a worker accepted, but didn't respond back within timeout.
It's very highly possible that there is some bugs in your Query handler logic. The bug caused decision worker to crash(which means Cadence java client also has a bug too, user code crashing shouldn't crash worker). And then a query task loop over all instances of your worker pool, finally crashed all your decision workers.

Invoking CloudRun endpoint from within itself

Assuming there is a Flask web server that has two routes, deployed as a CloudRun service over GKE.
#app.route('/cpu_intensive', methods=['POST'], endpoint='cpu_intensive')
def cpu_intensive():
#TODO: some actions, cpu intensive
#app.route('/batch_request', methods=['POST'], endpoint='batch_request')
def batch_request():
#TODO: invoke cpu_intensive
A "batch_request" is a batch of many same structured requests - each one is highly CPU intensive and handled by the function "cpu_intensive". No reasonable machine can handle a large batch and thus it needs to be paralleled across multiple replicas.
The deployment is configured that every instance can handle only 1 request at a time, so when multiple requests arrive CloudRun will replicate the instance.
I would like to have a service with these two endpoints, one to accept "batch_requests" and only break them down to smaller requests and another endpoint to actually handle a single "cpu_intensive" request. What is the best way for "batch_request" break down the batch to smaller requests and invoke "cpu_intensive" so that CloudRun will scale the number of instances?
make http request to localhost - doesn't work since the load balancer is not aware of these calls.
keep the deployment URL in a conf file and make a network call to it?
Other suggestions?
With more detail, it's now clearer!!
You have 2 responsibilities
One to split -> Many request can be handle in parallel, no compute intensive
One to process -> Each request must be processed on a dedicated instance because of compute intensive process.
If your split performs internal calls (with localhost for example) you will be only on the same instance, and you will parallelize nothing (just multi thread the same request on the same instance)
So, for this, you need 2 services:
one to split, and it can accept several concurrent request
The second to process, and this time you need to set the concurrency param to 1 to be sure to accept only one request in the same time.
To improve your design, and if the batch processing can be asynchronous (I mean, the split process don't need to know when the batch process is over), you can add PubSub or Cloud Task in the middle to decouple the 2 parts.
And if the processing requires more than 4 CPUs 4Gb of memory, or takes more than 1 hour, use Cloud Run on GKE and not Cloud Run managed.
Last word: Now, if you don't use PubSub, the best way is to set the Batch Process URL in Env Var of your Split Service to know it.
I believe for this use case it's much better to use GKE rather than Cloud Run. You can create two kubernetes deployements one for the batch_request app and one for the cpu_intensive app. the second one will be used as worker for the batch_request app and will scale on demand when there are more requests to the batch_request app. I believe this is called master-worker architecture in which you separate your app front from intensive work or batch jobs.

Spring Boot - running scheduled jobs as separate process

I have a spring boot application which also have few scheduled jobs. I don't see any functional issue with implementation. one of the job runs every almost second for real time updates. There are other jobs also.
I suspect there is performance issue especially when long running API hits the controller.
// Heavy Job
#Scheduled(fixedRate = 10000)
public void processAlerts(){
}
#Scheduled(fixedDelayString = "${process.events.interval}")
public void triggerTaskReadiness() throws IOException {
log.info("Trigger event processing job");
}
// Heavy Job to process data from different tables.
#Scheduled(fixedDelayString = "${app.status.interval}")
public void triggerUpdateAppHealth() throws IOException {
log.info("Trigger application health");
}
Is it possible to have jobs as separate process. What are the best practices to have spring boot application with heavy jobs.
The question is way too general, IMO. It all depends on your resources and what exactly does the job do.
Spring boot provides a general purpose scheduling mechanism but doesn't make any assumptions about the job nature.
All-in-all, its true that when you run a heavy job, CPU, network, I/O and whatever resources are consumed (Again, depending on the actual code of your job).
If you run it externally basically another process will consume the same resources assuming its being run on the same server.
From the spring boot standpoint I can say the following:
It looks like the job deal with database. In this case Spring boot supports the integration with DataSources, connection pooling, transaction management, more High Level APIs like JPA or even spring data, you can also plug in frameworks like JOOQ. Bottom line, it makes the actual work with the database much easier.
You've stated Mongodb in the question tag - well, spring has also mongo db integration in spring data.
Bottom line if you're running the job in an external process you're kind of on your own (which doesn't mean it can't be done, it just means you lose all the goodies spring has upon its sleeves)
AppHealth - spring boot already provides an actuator feature that has an endpoint of db health, it also provides a way to create your own endpoints to check the health of any concrete resource (you implement it in code so you have a freedom to check however you want). Make sure you're using the right tool for the right job.
Regarding the controller API. If you're running with traditional spring mvc, tomcat has a thread pool to serve the API, so from the Threads management point of view the threads of job won't be competing with the threads of controller, however they'll likely share the same db connection so it can become a bottleneck.
Regarding the implementation of #Scheduled. By default there will be one thread to serve all the #Scheduled jobs, which might be insufficient.
You can alter this behavior by creating your own taskScheduler:
#Bean(destroyMethod = "shutdown")
public Executor taskScheduler() {
return Executors.newScheduledThreadPool(10); // allocate 10 threads to run #Scheduled jobs
}
You might be interested to read this discussion
Spring #Scheduled always works "within the boundaries" of one spring managed application context. So that if you have decided to scale out your instances each and every instance will run the "scheduled" code and will execute heavy jobs.
Its possible to use Quartz with which spring can be integrated do to clustered mode you can configure it to pick one node every time and execute the job, but since you're planning to run every second, I doubt quartz will work good enough.
A general observation: running a set of "heavy" jobs as you say doesn't really sounds well with "running every second". It just doesn't sound reasonable, since heavy jobs tend to last much longer than 1 second, so doing this will eventually occupy all the resources and you won't be able to run more jobs.

Apache Spark - How does internal job scheduler in spark define what are users and what are pools

I am sorry about being a little general here, but I am a little confused about how job scheduling works internally in spark. From the documentation here I get that it is some sort of implementation of Hadoop Fair Scheduler.
I am unable to come around to understand that who exactly are users here (are the linux users, hadoop users, spark clients?). I am also unable to understand how are the pools defined here. For example, In my hadoop cluster I have given resource allocation to two different pools (lets call them team 1 and team 2). But in spark cluster, wont different pools and the users in them instantiate their own spark context? Which again brings me to question that what parameters do I pass when I am setting property to spark.scheduler.pool.
I have a basic understanding of how driver instantiates a spark context and then splits them into task and jobs. May be I am missing the point completely here but I would really like to understand how Spark's internal scheduler works in context of actions, tasks and job
I find official documentation quite thorough and covering all your questions. However, one might find it hard to digest from the first time.
Let us put some definitions and rough analogues before we delve into details. application is what creates SparkContext sc and may be referred to as something you deploy with spark-submit. job is an action in spark definition of transformation and action meaning anything like count, collect etc.
There are two main and in some sense separate topics: Scheduling Across applications and Scheduling Within application. The former relates more to Resource Managers including Spark Standalone FIFO only mode and also concept of static and dynamic allocation.
The later, Scheduling Within Spark application is the matter of your question, as I understood from your comment. Let me try to describe what happens there at some level of abstraction.
Suppose, you submitted your application and you have two jobs
sc.textFile("..").count() //job1
sc.textFile("..").collect() //job2
If this code happens to be executed in the same thread there is no much interesting happening here, job2 and all its tasks get resources only after job1 is done.
Now say you have the following
thread1 { job1 }
thread2 { job2 }
This is getting interesting. By default, within your application scheduler will use FIFO to allocate resources to all the tasks of whichever job happens to appear to scheduler as first. Tasks for the other job will get resources only when there are spare cores and no more pending tasks from more "prioritized" first job.
Now suppose you set spark.scheduler.mode=FAIR for your application. From now on each job has a notion of pool it belongs to. If you do nothing then for every job pool label is "default". To set the label for your job you can do the following
sc.setLocalProperty("spark.scheduler.pool", "pool1").textFile("").count() // job1
sc.setLocalProperty("spark.scheduler.pool", "pool2").textFile("").collect() // job2
One important note here is that setLocalProperty is effective per thread and also all spawned threads. What it means for us? Well if you are within the same thread it means nothing as jobs are executed one after another.
However, once you have the following
thread1 { job1 } // pool1
thread2 { job2 } // pool2
job1 and job2 become unrelated in the sense of resource allocation. In general, properly configuring each pool in fairscheduler file with minShare > 0 you can be sure that jobs from different pools will have resources to proceed.
However, you can go even further. By default, within each pool jobs are queued up in a FIFO manner and this situation is basically the same as in the scenario when we have had FIFO mode and jobs from different threads. To change that you you need to change the pool in the xml file to have <schedulingMode>FAIR</schedulingMode>.
Given all that, if you just set spark.scheduler.mode=FAIR and let all the jobs fall into the same "default" pool, this is roughly the same as if you would use default spark.scheduler.mode=FIFO and have your jobs be launched in different threads. If you still just want single "default" fair pool just change config for "default" pool in xml file to reflect that.
To leverage the mechanism of pools you need to define the concept of user which is the same as setting "spark.scheduler.pool" from a proper thread to a proper value. For example, if your application listens to JMS, then a message processor may set the pool label for each message processing job depending on its content.
Eventually, not sure if the number of words is less than in the official doc, but hopefully it helps is some way :)
By default spark works with FIFO scheduler where jobs are executed in FIFO manner.
But if you have your cluster on YARN, YARN has pluggable scheduler, it means in YARN you can scheduler of your choice. If you are using YARN distributed by CDH you will have FAIR scheduler by deafult but you can also go for Capacity scheduler.
If you are using YARN distributed by HDP you will have CAPACITY scheduler by default and you can move to FAIR if you need that.
How Scheduler works with spark?
I'm assuming that you have your spark cluster on YARN.
When you submit a job in spark, it first hits your resource manager. Now your resource manager is responsible for all the scheduling and allocating resources. So its basically same as that of submitting a job in Hadoop.
How scheduler works?
Fair scheduling is a method of assigning resources to jobs such that all jobs get, on average, an equal share of resources over time. When there is a single job running, that job uses the entire cluster. When other jobs are submitted, tasks slots that free up are assigned to the new jobs, so that each job gets roughly the same amount of CPU time(using preemption killing all over used tasks). Unlike the default Hadoop scheduler(FIFO), which forms a queue of jobs, this lets short jobs finish in reasonable time while not starving long jobs. It is also a reasonable way to share a cluster between a number of users. Finally, fair sharing can also work with job priorities - the priorities are used as weights to determine the fraction of total compute time that each job should get.
The CapacityScheduler is designed to allow sharing a large cluster while giving each organization a minimum capacity guarantee. The central idea is that the available resources in the Hadoop Map-Reduce cluster are partitioned among multiple organizations who collectively fund the cluster based on computing needs. There is an added benefit that an organization can access any excess capacity no being used by others. This provides elasticity for the organizations in a cost-effective manner.
Spark internally uses FIFO/FCFS job scheduler. But, when you talk about the tasks, it works in a Round Robin fashion. It will be clear if we concentrate on the below example:
Suppose, the first job in Spark's own queue doesn't require all the resources of the cluster to be utilized; so, immediately second job in the queue will also start getting executed. Now, both jobs are running simultaneously. Each job has few tasks to be executed in order to execute the whole job. Assume, the first job assigns 10 tasks and the second one assigns 8. Then, those 18 tasks will share the CPU cycles of the whole cluster in a preemptive manner. If you want to further drill down, lets start with executors.
There will be few executors in the cluster. Assume the number is 6. So, in an ideal condition, each executor will be assigned 3 tasks and those 3 tasks will get same CPU time of the executors(separate JVM).
This is how spark internally schedules the tasks.