Count operation in reduceByKey in spark - scala

val temp1 = tempTransform.map({ temp => ((temp.getShort(0), temp.getString(1)), (USAGE_TEMP.getDouble(2), USAGE_TEMP.getDouble(3)))})
.reduceByKey((x, y) => ((x._1+y._1),(x._2+y._2)))
Here I have performed Sum operation But Is it possible to do count operation inside reduceByKey.
Like what i think,
reduceByKey((x, y) => (math.count(x._1),(x._2+y._2)))
But this is not working any suggestion please.

Well, counting is equivalent to summing 1s, so just map the first item in each value tuple into 1 and sum both parts of the tuple like you did before:
val temp1 = tempTransform.map { temp =>
((temp.getShort(0), temp.getString(1)), (1, USAGE_TEMP.getDouble(3)))
}
.reduceByKey((x, y) => ((x._1+y._1),(x._2+y._2)))
Result would be an RDD[((Short, String), (Int, Double))] where the first item in the value tuple (the Int) is the number of original records matching that key.
That's actually the classic map-reduce example - word count.

No, you can't do that. RDD provide iterator model for lazy computation. So every element will be visited only once.
If you really want to do sum as described, re-partition your rdd first, then use mapWithPartition, implement your calculation in closure( Keep in mind that elements in RDD is not in order).

Related

Order Spark RDD based on ordering in another RDD

I have an RDD with strings like this (ordered in a specific way):
["A","B","C","D"]
And another RDD with lists like this:
["C","B","F","K"],
["B","A","Z","M"],
["X","T","D","C"]
I would like to order the elements in each list in the second RDD based on the order in which they appear in the first RDD. The order of the elements that do not appear in the first list is not of concern.
From the above example, I would like to get an RDD like this:
["B","C","F","K"],
["A","B","Z","M"],
["C","D","X","T"]
I know I am supposed to use a broadcast variable to broadcast the first RDD as I process each list in the second RDD. But I am very new to Spark/Scala (and functional programming in general) so I am not sure how to do this.
I am assuming that the first RDD is small since you talk about broadcasting it. In that case you are right, broadcasting the ordering is a good way to solve your problem.
// generating data
val ordering_rdd = sc.parallelize(Seq("A","B","C","D"))
val other_rdd = sc.parallelize(Seq(
Seq("C","B","F","K"),
Seq("B","A","Z","M"),
Seq("X","T","D","C")
))
// let's start by collecting the ordering onto the driver
val ordering = ordering_rdd.collect()
// Let's broadcast the list:
val ordering_br = sc.broadcast(ordering)
// Finally, let's use the ordering to sort your records:
val result = other_rdd
.map( _.sortBy(x => {
val index = ordering_br.value.indexOf(x)
if(index == -1) Int.MaxValue else index
}))
Note that indexOf returns -1 if the element is not found in the list. If we leave it as is, all non-found elements would end up at the beginning. I understand that you want them at the end so I relpace -1 by some big number.
Printing the result:
scala> result.collect().foreach(println)
List(B, C, F, K)
List(A, B, Z, M)
List(C, D, X, T)

Scala - How to select the last element from an RDD?

First I had a salesList: List[Sale] and in order to get an ID of the last Sale in the List I've used lastOption:
val lastSaleId: Option[Any] = salesList.lastOption.map(_.saleId)
But now I've modified a method with List[Sale] to work with salesListRdd: List[RDD[Sale]]. So I've changed the way I'm getting an ID of the last Sale:
val lastSaleId: Option[Any] = SparkContext
.union(salesListRdd)
.collect().toList
.lastOption.map(_.saleId)
I'm not sure that it is the best way to go. Because here I'm still collecting RDD to a List which brings it to the driver node and it may cause the driver to run out of memory.
Is there a way to get an ID of the last Sale from an RDD preserving the initial order of records? Not any kind of sorting but the way the Sale objects were originally stored in the List?
There at least two efficient solutions. You can either use top with zipWithIndex:
def lastValue[T](rdd: RDD[T]): Option[T] = {
rdd.zipWithUniqueId.map(_.swap).top(1)(Ordering[Long].on(_._1)).headOption.map(_._2)
}
or top with custom key:
def lastValue[T](rdd: RDD[T]): Option[T] = {
rdd.mapPartitionsWithIndex(
(i, iter) => iter.zipWithIndex.map { case (x, j) => ((i, j), x) }
).top(1)(Ordering[(Int, Long)].on(_._1)).headOption.map(_._2)
}
The former one requires additional action for zipWithIndex while the latter one doesn't.
Before using please be sure to understand the limitation. Quoting the docs:
Note that some RDDs, such as those returned by groupBy(), do not guarantee order of elements in a partition. The unique ID assigned to each element is therefore not guaranteed, and may even change if the RDD is reevaluated. If a fixed ordering is required to guarantee the same index assignments, you should sort the RDD with sortByKey() or save it to a file.
In particular, depending on the exact input, Union might not preserve the input order at all.
You could use zipWithIndex and sort descending by it, so that the last record will be on the top, then take(1):
salesListRdd
.zipWithIndex()
.map({ case (x, y) => (y, x) })
.sortByKey(ascending = false)
.map({ case (x, y) => y })
.take(1)
Solution is taken from here: http://www.swi.com/spark-rdd-getting-bottom-records/
However, it is highly inefficient, since It does lots of partition shuffling.

aggregate data for uniquely tagged values in a list in scala

I was wondering if somebody could help.
I'm trying to aggregate some data in a list based on id values, I have a listBuffer which is updated from a foreach function. My output means I have an id number and a value, because the foreach applies a function to each id often more than once, the list I end up with looks something like the following:
ListBuffer(3106;0, 3106;3, 3108;2, 3108;0, 3110;1, 3110;2, 3113;0, 3113;2, 3113;0)
What I want to do is apply a simple function to aggregate this data, so I am left with
List(3106;3 ,3108;2, 3110;3, 3113;2)
I thought this could be done with foldLeft or groupBy, however I'm not sure how to get it to recognise id values and normal values.
Any help or pointers would be much appreciated
First of all, you can't group key-value pairs this way. In scala you have tuples which are written as
val pair: (Int, Int) = (3106,3), where
pair._1 == 3106
pair._2 == 3
are true statements.
So you have:
val l = ListBuffer((3106,0), (3106,3), (3108,2), (3108,0), (3110,1), (3110,2), (3113,0), (3113,2), (3113,0))
val result = l.groupBy(x => x._1).map(x => (x._1, x._2.map(_._2))).map(x => (x._1, x._2.sum)).toList
println(result)
will give you
List((3106,3), (3108,2), (3110,3), (3113,2))

transform rdd into pairRDD

This is a newbie question.
Is it possible to transform an RDD like (key,1,2,3,4,5,5,666,789,...) with a dynamic dimension into a pairRDD like (key, (1,2,3,4,5,5,666,789,...))?
I feel like it should be super-easy but I cannot get how to.
The point of doing it is that I would like to sum all the values, but not the key.
Any help is appreciated.
I am using Spark 1.2.0
EDIT enlightened by the answer I explain my use case deeplier. I have N (unknown at compile time) different pairRDD (key, value), that have to be joined and whose values must be summed up. Is there a better way than the one I was thinking?
First of all if you just wanna sum all integers but first the simplest way would be:
val rdd = sc.parallelize(List(1, 2, 3))
rdd.cache()
val first = rdd.sum()
val result = rdd.count - first
On the other hand if you want to have access to the index of elements you can use rdd zipWithIndex method like this:
val indexed = rdd.zipWithIndex()
indexed.cache()
val result = (indexed.first()._2, indexed.filter(_._1 != 1))
But in your case this feels like overkill.
One more thing i would add, this looks like questionable desine to put key as first element of your rdd. Why not just instead use pairs (key, rdd) in your driver program. Its quite hard to reason about order of elements in rdd and i cant not think about natural situation in witch key is computed as first element of rdd (ofc i dont know your usecase so i can only guess).
EDIT
If you have one rdd of key value pairs and you want to sum them by key then do just:
val result = rdd.reduceByKey(_ + _)
If you have many rdds of key value pairs before counting you can just sum them up
val list = List(pairRDD0, pairRDD1, pairRDD2)
//another pairRDD arives in runtime
val newList = anotherPairRDD0::list
val pairRDD = newList.reduce(_ union _)
val resultSoFar = pairRDD.reduceByKey(_ + _)
//another pairRDD arives in runtime
val result = resultSoFar.union(anotherPairRDD1).reduceByKey(_ + _)
EDIT
I edited example. As you can see you can add additional rdd when every it comes up in runtime. This is because reduceByKey returns rdd of the same type so you can iterate this operation (Ofc you will have to consider performence).

reduceByKey: How does it work internally?

I am new to Spark and Scala. I was confused about the way reduceByKey function works in Spark. Suppose we have the following code:
val lines = sc.textFile("data.txt")
val pairs = lines.map(s => (s, 1))
val counts = pairs.reduceByKey((a, b) => a + b)
The map function is clear: s is the key and it points to the line from data.txt and 1 is the value.
However, I didn't get how the reduceByKey works internally? Does "a" points to the key? Alternatively, does "a" point to "s"? Then what does represent a + b? how are they filled?
Let's break it down to discrete methods and types. That usually exposes the intricacies for new devs:
pairs.reduceByKey((a, b) => a + b)
becomes
pairs.reduceByKey((a: Int, b: Int) => a + b)
and renaming the variables makes it a little more explicit
pairs.reduceByKey((accumulatedValue: Int, currentValue: Int) => accumulatedValue + currentValue)
So, we can now see that we are simply taking an accumulated value for the given key and summing it with the next value of that key. NOW, let's break it further so we can understand the key part. So, let's visualize the method more like this:
pairs.reduce((accumulatedValue: List[(String, Int)], currentValue: (String, Int)) => {
//Turn the accumulated value into a true key->value mapping
val accumAsMap = accumulatedValue.toMap
//Try to get the key's current value if we've already encountered it
accumAsMap.get(currentValue._1) match {
//If we have encountered it, then add the new value to the existing value and overwrite the old
case Some(value : Int) => (accumAsMap + (currentValue._1 -> (value + currentValue._2))).toList
//If we have NOT encountered it, then simply add it to the list
case None => currentValue :: accumulatedValue
}
})
So, you can see that the reduceByKey takes the boilerplate of finding the key and tracking it so that you don't have to worry about managing that part.
Deeper, truer if you want
All that being said, that is a simplified version of what happens as there are some optimizations that are done here. This operation is associative, so the spark engine will perform these reductions locally first (often termed map-side reduce) and then once again at the driver. This saves network traffic; instead of sending all the data and performing the operation, it can reduce it as small as it can and then send that reduction over the wire.
One requirement for the reduceByKey function is that is must be associative. To build some intuition on how reduceByKey works, let's first see how an associative associative function helps us in a parallel computation:
As we can see, we can break an original collection in pieces and by applying the associative function, we can accumulate a total. The sequential case is trivial, we are used to it: 1+2+3+4+5+6+7+8+9+10.
Associativity lets us use that same function in sequence and in parallel. reduceByKey uses that property to compute a result out of an RDD, which is a distributed collection consisting of partitions.
Consider the following example:
// collection of the form ("key",1),("key,2),...,("key",20) split among 4 partitions
val rdd =sparkContext.parallelize(( (1 to 20).map(x=>("key",x))), 4)
rdd.reduceByKey(_ + _)
rdd.collect()
> Array[(String, Int)] = Array((key,210))
In spark, data is distributed into partitions. For the next illustration, (4) partitions are to the left, enclosed in thin lines. First, we apply the function locally to each partition, sequentially in the partition, but we run all 4 partitions in parallel. Then, the result of each local computation are aggregated by applying the same function again and finally come to a result.
reduceByKey is an specialization of aggregateByKey aggregateByKey takes 2 functions: one that is applied to each partition (sequentially) and one that is applied among the results of each partition (in parallel). reduceByKey uses the same associative function on both cases: to do a sequential computing on each partition and then combine those results in a final result as we have illustrated here.
In your example of
val counts = pairs.reduceByKey((a,b) => a+b)
a and b are both Int accumulators for _2 of the tuples in pairs. reduceKey will take two tuples with the same value s and use their _2 values as a and b, producing a new Tuple[String,Int]. This operation is repeated until there is only one tuple for each key s.
Unlike non-Spark (or, really, non-parallel) reduceByKey where the first element is always the accumulator and the second a value, reduceByKey operates in a distributed fashion, i.e. each node will reduce it's set of tuples into a collection of uniquely-keyed tuples and then reduce the tuples from multiple nodes until there is a final uniquely-keyed set of tuples. This means as the results from nodes are reduced, a and b represent already reduced accumulators.
Spark RDD reduceByKey function merges the values for each key using an associative reduce function.
The reduceByKey function works only on the RDDs and this is a transformation operation that means it is lazily evaluated. And an associative function is passed as a parameter, which is applied to source RDD and creates a new RDD as a result.
So in your example, rdd pairs has a set of multiple paired elements like (s1,1), (s2,1) etc. And reduceByKey accepts a function (accumulator, n) => (accumulator + n), which initialise the accumulator variable to default value 0 and adds up the element for each key and return the result rdd counts having the total counts paired with key.
Simple if your input RDD data look like this:
(aa,1)
(bb,1)
(aa,1)
(cc,1)
(bb,1)
and if you apply reduceByKey on above rdd data then few you have to remember,
reduceByKey always takes 2 input (x,y) and always works with two rows at a time.
As it is reduceByKey it will combine two rows of same key and combine the result of value.
val rdd2 = rdd.reduceByKey((x,y) => x+y)
rdd2.foreach(println)
output:
(aa,2)
(bb,2)
(cc,1)