How old orders should be treated with a resend request - quickfix

Occasionally my quickfixN engine loses connection with the exchange, and when it reconnects the exchange realises there are missing messages and asks for a resend. My engine then sends the messages.
However often the orders are old, and often I will have subsequently sent an orderCancellation request. Nevertheless when the exchange executes the messages in order when they are resent there's a good chance the Orders will be filled.
What is the correct way to deal with this problem? ie, how can I tell the exchange not to execute these orders, or alternatively, how can I stop quickfixN from resending old orders?

I don't know if there is a universally "correct" way to handle this issue.
In our system, we always, always respond with a Gap Fill, i.e.
Exchange: "Hey, we're missing sequences 537 through 542!"
Us: "Don't worry about it. Expect sequence 545 next."
The 545 is not a typo—we may have already sent 543 and 544 while their Resend Request was in transmission.
This technique is expressly to avoid the kind of dilemmas you're facing. By refusing to send old messages, you at the very least retain control over your executions.
To illustrate a larger perspective, what we do is, when we initiate any action on an order, we flag the order as "in progress," meaning it cannot be actioned further in any way (amended/CFO'ed or cancelled). Only when we receive an ACK, i.e. an Execution Report, do we remove this state. So if the exchange misses a message pertaining to that order, that order simply ends up "stuck" (and gets highlighted as such on the front-end). Not ideal, but again, at least it's not out of control. The trader then simply re-enters the desired order. (Note that it's the very guarantee that we won't resend messages that enables a trader to safely re-enter orders.) With our system it's just try-again-and-move-on, without need for complex sequence-scenario resolving.
Source: Work on an order entry system connecting to >10 Canadian exchanges, used by >50 Canadian brokers.

Related

Orion CB Batch updates and notifications throttle

I'm running several batch updates (with about 200 entities each one) and I have a Quantum Leap subscribed to the CB to capture the historical data. It is supposed that each batch update should generate 200 different notifications, but, if I have set a throttle of "1", does this mean I will only receive the first notification and loose the other 199? Is this right? (just watching the QL, it seems to me that I'm loosing many notifications)
Entities are processed one by one during a batch update request. Thus, if you have 200 entities the update in each one triggers a subscription, then you will have 200 notifications being sent.
The throttling effect depends on the case. For instance:
If each entity triggers a different subscription, then they have any effect (as the trottling is evaluated by subscription)
If each entity triggers the same subscription and assuming that all the 200 notifications are send very fast (let's say, less than 1 second) then only the first one will be sent, and the 199 remaining ones will be lost.
In general, we don't recommend to use throttling due to this (and some other :) problems. It uses to be better to implement traffic flow control in the receiver.

Using many consumers in SQS Queue

I know that it is possible to consume a SQS queue using multiple threads. I would like to guarantee that each message will be consumed once. I know that it is possible to change the visibility timeout of a message, e.g., equal to my processing time. If my process spend more time than the visibility timeout (e.g. a slow connection) other thread can consume the same message.
What is the best approach to guarantee that a message will be processed once?
What is the best approach to guarantee that a message will be processed once?
You're asking for a guarantee - you won't get one. You can reduce probability of a message being processed more than once to a very small amount, but you won't get a guarantee.
I'll explain why, along with strategies for reducing duplication.
Where does duplication come from
When you put a message in SQS, SQS might actually receive that message more than once
For example: a minor network hiccup while sending the message caused a transient error that was automatically retried - from the message sender's perspective, it failed once, and successfully sent once, but SQS received both messages.
SQS can internally generate duplicates
Simlar to the first example - there's a lot of computers handling messages under the covers, and SQS needs to make sure nothing gets lost - messages are stored on multiple servers, and can this can result in duplication.
For the most part, by taking advantage of SQS message visibility timeout, the chances of duplication from these sources are already pretty small - like fraction of a percent small.
If processing duplicates really isn't that bad (strive to make your message consumption idempotent!), I'd consider this good enough - reducing chances of duplication further is complicated and potentially expensive...
What can your application do to reduce duplication further?
Ok, here we go down the rabbit hole... at a high level, you will want to assign unique ids to your messages, and check against an atomic cache of ids that are in progress or completed before starting processing:
Make sure your messages have unique identifiers provided at insertion time
Without this, you'll have no way of telling duplicates apart.
Handle duplication at the 'end of the line' for messages.
If your message receiver needs to send messages off-box for further processing, then it can be another source of duplication (for similar reasons to above)
You'll need somewhere to atomically store and check these unique ids (and flush them after some timeout). There are two important states: "InProgress" and "Completed"
InProgress entries should have a timeout based on how fast you need to recover in case of processing failure.
Completed entries should have a timeout based on how long you want your deduplication window
The simplest is probably a Guava cache, but would only be good for a single processing app. If you have a lot of messages or distributed consumption, consider a database for this job (with a background process to sweep for expired entries)
Before processing the message, attempt to store the messageId in "InProgress". If it's already there, stop - you just handled a duplicate.
Check if the message is "Completed" (and stop if it's there)
Your thread now has an exclusive lock on that messageId - Process your message
Mark the messageId as "Completed" - As long as this messageId stays here, you won't process any duplicates for that messageId.
You likely can't afford infinite storage though.
Remove the messageId from "InProgress" (or just let it expire from here)
Some notes
Keep in mind that chances of duplicate without all of that is already pretty low. Depending on how much time and money deduplication of messages is worth to you, feel free to skip or modify any of the steps
For example, you could leave out "InProgress", but that opens up the small chance of two threads working on a duplicated message at the same time (the second one starting before the first has "Completed" it)
Your deduplication window is as long as you can keep messageIds in "Completed". Since you likely can't afford infinite storage, make this last at least as long as 2x your SQS message visibility timeout; there is reduced chances of duplication after that (on top of the already very low chances, but still not guaranteed).
Even with all this, there is still a chance of duplication - all the precautions and SQS message visibility timeouts help reduce this chance to very small, but the chance is still there:
Your app can crash/hang/do a very long GC right after processing the message, but before the messageId is "Completed" (maybe you're using a database for this storage and the connection to it is down)
In this case, "Processing" will eventually expire, and another thread could process this message (either after SQS visibility timeout also expires or because SQS had a duplicate in it).
Store the message, or a reference to the message, in a database with a unique constraint on the Message ID, when you receive it. If the ID exists in the table, you've already received it, and the database will not allow you to insert it again -- because of the unique constraint.
AWS SQS API doesn't automatically "consume" the message when you read it with API,etc. Developer need to make the call to delete the message themselves.
SQS does have a features call "redrive policy" as part the "Dead letter Queue Setting". You just set the read request to 1. If the consume process crash, subsequent read on the same message will put the message into dead letter queue.
SQS queue visibility timeout can be set up to 12 hours. Unless you have a special need, then you need to implement process to store the message handler in database to allow it for inspection.
You can use setVisibilityTimeout() for both messages and batches, in order to extend the visibility time until the thread has completed processing the message.
This could be done by using a scheduledExecutorService, and schedule a runnable event after half the initial visibility time. The code snippet bellow creates and executes the VisibilityTimeExtender every half of the visibilityTime with a period of half the visibility time. (The time should to guarantee the message to be processed, extended with visibilityTime/2)
private final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);
ScheduledFuture<?> futureEvent = scheduler.scheduleAtFixedRate(new VisibilityTimeExtender(..), visibilityTime/2, visibilityTime/2, TimeUnit.SECONDS);
VisibilityTimeExtender must implement Runnable, and is where you update the new visibility time.
When the thread is done processing the message, you can delete it from the queue, and call futureEvent.cancel(true) to stop the scheduled event.

Looking for message bus implementations that offer something between full ACID and nothing

Anyone know of a message bus implementation which offers granular control over consistency guarantees? Full ACID is too slow and no ACID is too wrong.
We're currently using Rhino ESB wrapping MSMQ for our messaging. When using durable, transactional messaging with distributed transactions, MSMQ can block the commit for considerable time while it waits on I/O completion.
Our messages fall into two general categories: business logic and denormalisation. The latter account for a significant percentage of message bus traffic.
Business logic messages require the guarantees of full ACID and MSMQ has proven quite adequate for this.
Denormalisation messages:
MUST be durable.
MUST NOT be processed until after the originating transaction completes.
MAY be processed multiple times.
MAY be processed even if the originating transaction rolls back, as long as 2) is adhered to.
(In some specific cases the durability requirements could probably be relaxed, but identifying and handling those cases as exceptions to the rule adds complexity.)
All denormalisation messages are handled in-process so there is no need for IPC.
If the process is restarted, all transactions may be assumed to have completed (committed or rolled back) and all denormalisation messages not yet processed must be recovered. It is acceptable to replay denormalisation messages which were already processed.
As far as I can tell, messaging systems which deal with transactions tend to offer a choice between full ACID or nothing, and ACID carries a performance penalty. We're seeing calls to TransactionScope#Commit() taking as long as a few hundred milliseconds in some cases depending on the number of messages sent.
Using a non-transactional message queue causes messages to be processed before their originating transaction completes, resulting in consistency problems.
Another part of our system which has similar consistency requirements but lower complexity is already using a custom implementation of something akin to a transaction log, and generalising that for this use case is certainly an option, but I'd rather not implement a low-latency, concurrent, durable, transactional messaging system myself if I don't have to :P
In case anyone's wondering, the reason for requiring durability of denormalisation messages is that detecting desyncs and fixing desyncs can be extremely difficult and extremely expensive respectively. People do notice when something's slightly wrong and a page refresh doesn't fix it, so ignoring desyncs isn't an option.
It's not exactly the answer you're looking for, but Jonathan Oliver has written extensively on how to avoid using distributed transactions in messaging and yet maintain transactional integrity:
http://blog.jonathanoliver.com/2011/04/how-i-avoid-two-phase-commit/
http://blog.jonathanoliver.com/2011/03/removing-2pc-two-phase-commit/
http://blog.jonathanoliver.com/2010/04/idempotency-patterns/
Not sure if this helps you but, hey.
It turns out that MSMQ+SQL+DTC don't even offer the consistency guarantees we need. We previously encountered a problem where messages were being processed before the distributed transaction which queued them had been committed to the database, resulting in out-of-date reads. This is a side-effect of using ReadCommitted isolation to consume the queue, since:
Start transaction A.
Update database table in A.
Queue message in A.
Request commit of A.
Message queue commits A
Start transaction B.
Read message in B.
Read database table in B, using ReadCommitted <- gets pre-A data.
Database commits A.
Our requirement is that B's read of the table block on A's commit, which requires Serializable transactions, which carries a performance penalty.
It looks like the normal thing to do is indeed to implement the necessary constraints and guarantees oneself, even though it sounds like reinventing the wheel.
Anyone got any comments on this?
If you want to do this by hand, here is a reliable approach. It satisfies (1) and (2), and it doesn't even need the liberties that you allow in (3) and (4).
Producer (business logic) starts transaction A.
Insert/update whatever into one or more tables.
Insert a corresponding message into PrivateMessageTable (part of the domain, and unshared, if you will). This is what will be distributed.
Commit transaction A. Producer has now simply and reliably performed its writes including the insertion of a message, or rolled everything back.
Dedicated distributer job queries a batch of unprocessed messages from PrivateMessageTable.
Distributer starts transaction B.
Mark the unprocessed messages as processed, rolling back if the number of rows modified is different than expected (two instances running at the same time?).
Insert a public representation of the messages into PublicMessageTable (a publically exposed table, in whatever way). Assign new, strictly sequential Ids to the public representations. Because only one process is doing these inserts, this can be guaranteed. Note that the table must be on the same host to avoid 2PC.
Commit transaction B. Distributor has now distributed each message to the public table exactly once, with strictly sequantial Ids.
A consumer (there can be several) queries the next batch of messages from PublicMessageTable with Id greater than its own LastSeenId.
Consumer starts transaction C.
Consumer inserts its own representation of the messages into its own table ConsumerMessageTable (thus advancing LastSeenId). Insert-ignore can help protect against multiple instances running. Note that this table can be in a completely different server.
Commit transaction C. Consumer has now consumed each message exactly once, in the same order the messages were made publically available, without ever skipping a message.
We can do whatever we want based on the consumed messages.
Of course, this requires very careful implementation.
It is even suitable for database clusters, as long as there is only a single write node, and both reads and writes perform causality checks. It may well be that having one of these is sufficient, but I'd have to consider the implications more carefully to make that claim.

What's the expected behavior when TCP connection is lost?

I looked through FIX v4.2 spec, it is not clear to me what the expected behavior it should be when the TCP connection is lost in the middle of a session.
More specifically, suppose the current sequence number is 100 and at this point the TCP connection is lost, when either side tries to resume the session, it re-sends message number 100, or starts a new session with logon?
In describing FIX session, the spec says one session has one logon and one logout, but could go across multiple physical connections. This leads me to think that when the TCP connection is lost, the resuming process should not be starting with a logon message, but I am not positive on that.
Thanks in advance!
FIX protocol does not define anything related to the transport protocol. There were some documents on the official web site that only suggest how it can be implemented on top of this or that protocol, but only suggests.
Therefore, the expected behavior in case of TCP/IP disconnect depends on implementation. For instance, it is possible to have a system that does not care about TCP/IP disconnects at all, which would make those details irrelevant. In that case, the expected behavior would have been to continue sending receiving messages after connection is re-established, and of course proceed to a “recovery” of lost messages, if any. In reality, though, I have never seen a system like that.
In practice, all systems treat TCP/IP disconnects as implicit lose of session and expect clients to send a logon upon re-connect.
When logging in, there are two options — a re-connecting session may send the next outgoing sequence number or it may ask server to reset the sequence (to 1). In first case, the server side may send a logon acknowledgement if sequence is greater or equal to what it expected, or close (or even reject) the session if the received sequence number is less than expected. Additionally, if the sequence was greater than expected, server will issue a re-transmission. Client session monitors the sequence of the server as well, and needs to request a re-transmission if it detects a gap (received sequence is greater than expected). In the second case, if the server supports sequence reset, both in and out sequences are reset to 1 and no messages are recovered.
In your case, if connection is lost after sending a message with sequence number 100, client would have to re-connect and send a logon with sequence 101, and proceed from there. Alternatively, connect and reset the sequence, in which case some messages might get lost.
Also, don’t forget to check specifics of the venue you connect to. There could be very weird details that are not specified by the FIX protocol at all, or even those going against the FIX protocol. For instance, ICE (indeed one of the most brain-dead exchanges in general) is one of the silliest exchanges in this regard — it doesn’t allow re-connecting within first 15 seconds, and then if clients cannot connect for 30 seconds, they should switch to a failover server. If failover happens, they fail to keep the sequence number in tact, and clients are left no choice but reset the sequence number.
Hope it makes things a bit clearer for you. Good Luck!
If the transport layer is TCP/IP, I would expect the session initator to:
Re-establish a socket connection
Send a new logon message
The sequence number to use on the logon message depends on the type of session and what has been agreed with the FIX session acceptor (see the spec for details). For sessions where there is no value in replaying any lot messages e.g. market data feeds where the prices would be stale, it makes sense to send a logon message with sequence number 1 and set tag 141=Y (to reset the sequence numbers). For an orders session, where message replay might be required, the session initiator should generally logon with a sequence number of one greater than the last message sent (and expect a logon response from the FIX session acceptor with sequence number of 1 greater than the last message received).
Unless you really need the message replay, it is cleaner and easier to reset the sequence numbers each time upon logon. This obviously depends on the FIX session acceptor (FIX server) support for this. For things like STP feeds, I've found this to be far more reliable and it is generally better for the application protocol to provide application level replay facilities rather than relying on the brittleness of FIX session replay.

FIX protocol sequence number

I have few question on FIX protocol sequence number:
What is the benefit of setting ResetOnLogon=N?
Does initiator and acceptor both can send Resend request?
How message sequence helps in session recovery/error handling?
it means that sequence numbers are reset by the protocol on a logon message. This keeps sequence numbers low which can be useful. The sell side usually defines whether this should be done or not.
Yes, as long as the engine thinks that, due to out of synch sequence numbers, a message may have been lost it may request a resend.
If sequence numbers are out of synch between a message and its predecessor, and the number is higher than expected then the engine may assume that some messages have been lost in the connection. This means that it needs to recover these meaasges.
If you have any more questions or want more information I would be happy to reply.
ResetOnLogon determines if sequence numbers should be reset when recieving a logon request. (please find documentation here: http://www.quickfixengine.org/quickfix/doc/html/configuration.html)
Yes, both can send a Resend Request, but you must follow the specs between your side and the counterparty.
The message sequence numbers tell that no messages were lost during the current session. If there is a mismatch, actions must be taken in order to establish the correct sync between the 2 sides.