Scala Stream processing - scala

I wrote the following code in scala using streams
def foo(x: Int) : Stream[Int] = {println("came inside"); (2 * x)} #:: foo(x + 1)
foo(1).takeWhile(_ < 6).toList.foreach(x => println(s"+++ $x"))
This works and produces the following output
came inside
came inside
came inside
+++ 2
+++ 4
but I wanted the processing to happen like
came inside
+++ 2
came inside
+++ 4
came inside
Basically I want to process one by one, till the termination condition of < 6 is met. I guess its my "tolist" method which first creates a giant list and only then processes it.

First, format your code in a more readable fashion. Then, remove the toList: all it does is pull your entire stream into a single variable. Doing this forces all the values to be calculated. Since every value is calculated at this point, we know that the 'inside' printlns will execute before the 'outside' ones do. You want to store the definition of your function (including it's starting value) as a lazily evaluated value. This should work:
def river(x: Int) : Stream[Int] = {
println("Inside function.")
(2 * x) #:: river(x + 1)
}
lazy val creek = river(1)
creek.takeWhile(_ < 6).foreach(x => println(s"+++ $x"))

Related

lazy val v.s. val for recursive stream in Scala

I understand the basic of diff between val and lazy val .
but while I run across this example, I 'm confused.
The following code is right one. It is a recursion on stream type lazy value.
def recursive(): {
lazy val recurseValue: Stream[Int] = 1 #:: recurseValue.map(_+1)
recurseValue
}
If I change lazy val to val. It reports error.
def recursive(): {
//error forward reference failed.
val recurseValue: Stream[Int] = 1 #:: recurseValue.map(func)
recurseValue
}
My trace of thought in 2th example by substitution model/evaluation strategy is :
the right hand sight of #:: is call by name with that the value shall be of the form :
1 #:: ?,
and if 2th element being accessed afterward, it refer to current recurseValue value and rewriting it to :
1 :: ((1 #:: ?) map func) =
1 :: (func(1) #:: (? map func))
.... and so on and so on such that the compiler should success.
I don't see any error when I rewriting it ,is there somthing wrong?
EDIT:
CONCLUSION:I found it work fine if the val defined as a field. And I also noticed this post about implement of val. The conclusion is that the val has different implementation in method or field or REPL. That's confusing really.
That substitution model works for recursion if you are defining functions, but you can't define a variable in terms of itself unless it is lazy. All of the info needed to compute the right-hand side must be available for the assignment to take place, so a bit of laziness is required in order to recursively define a variable.
You probably don't really want to do this, but just to show that it works for functions:
scala> def r = { def x:Stream[Int] = 1#::( x map (_+1) ); x }
r: Stream[Int]
scala> r take 3 foreach println
1
2
3

How should I use #:: / hash colon colon in Scala?

In a Stackoverflow post about the creation of Fibonacci numbers I found the method #:: (What is the fastest way to write Fibonacci function in Scala?). In ScalaDocs I found this entry (see here, 1) describing the hash colon colon method as An extractor that allows to pattern match streams with #::.
I realized that I can use the fibonacci function like this
def fibonacci: Stream[Long] = {
def tail(h: Long, n: Long): Stream[Long] = h #:: tail(n, h + n)
tail(0, 1)
}
fibonacci(10) //res4: Long = 55
How should I understand the ScalaDocs explanation? Can you give an additional example?
Why it was not necessary to define a parameter in the fibonacci function above?
The method #:: is defined for Streams. It is similar to the :: method for Lists. The main difference between a List and a Stream is that the elements of a Stream are lazy evaluated.
There's some scala magic happens on the last line. Actually, first you're evaluating the fibonacci expression, and it returns a Stream object. The first and the second elements of this stream are 0 and 1, as follows from the third line of your example, and the rest of the Stream is defined via recursive call. And then you're extracting tenth element from the stream, and it evaluates to 55.
In the code below, I show similar access to the fourth List's element
val list = List(1,2,3,4,5)
println(list(3)) // prints 4
In a nutshell, think about Streams as infinite Lists. You can find more about Streams here http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Stream
In your example h #:: tail(n, h + n) creates a new stream, where the h is the head of the stream and tail(n, h + n) a stream which will be evaluated lazily.
Another (and maybe easier) example would be to define natural numbers as a stream of BigInt.
def naturalNumbers = {
def next(n: BigInt) : Stream[BigInt] = n #:: next(n + 1)
next(0)
}
println(naturalNumbers) would result in printing Stream(0, ?), because the head is strict, meaning that it will be always evaluated. The tail would be next(1), which is only evaluated when needed.
In your example fibonacci(10) is syntactic sugar for fibonacci.apply(10) which is defined in the Stream class and yields the element with the index in the stream.
You can also do a lot of others things with streams. For example get the first fibonacci number that is greater than 100: fibonacci.dropWhile(_ <= 100).head or just print the first 100 fibonacci numbers println(fibonacci.take(100).toList)
The quick answer to #2 is that fibonacci(10) isn't a function call with parameters, it's a function call with no parameters followed by an invocation of whatever is returned with the parameter "10".
It would have been easier to understand if written like this:
scala> val s = fibonacci
s: Stream[Long] = Stream(0, ?)
scala> s(10)
res1: Long = 55

Scala, Erastothenes: Is there a straightforward way to replace a stream with an iteration?

I wrote a function that generates primes indefinitely (wikipedia: incremental sieve of Erastothenes) usings streams. It returns a stream, but it also merges streams of prime multiples internally to mark upcoming composites. The definition is concise, functional, elegant and easy to understand, if I do say so myself:
def primes(): Stream[Int] = {
def merge(a: Stream[Int], b: Stream[Int]): Stream[Int] = {
def next = a.head min b.head
Stream.cons(next, merge(if (a.head == next) a.tail else a,
if (b.head == next) b.tail else b))
}
def test(n: Int, compositeStream: Stream[Int]): Stream[Int] = {
if (n == compositeStream.head) test(n+1, compositeStream.tail)
else Stream.cons(n, test(n+1, merge(compositeStream, Stream.from(n*n, n))))
}
test(2, Stream.from(4, 2))
}
But, I get a "java.lang.OutOfMemoryError: GC overhead limit exceeded" when I try to generate the 1000th prime.
I have an alternative solution that returns an iterator over primes and uses a priority queue of tuples (multiple, prime used to generate multiple) internally to mark upcoming composites. It works well, but it takes about twice as much code, and I basically had to restart from scratch:
import scala.collection.mutable.PriorityQueue
def primes(): Iterator[Int] = {
// Tuple (composite, prime) is used to generate a primes multiples
object CompositeGeneratorOrdering extends Ordering[(Long, Int)] {
def compare(a: (Long, Int), b: (Long, Int)) = b._1 compare a._1
}
var n = 2;
val composites = PriorityQueue(((n*n).toLong, n))(CompositeGeneratorOrdering)
def advance = {
while (n == composites.head._1) { // n is composite
while (n == composites.head._1) { // duplicate composites
val (multiple, prime) = composites.dequeue
composites.enqueue((multiple + prime, prime))
}
n += 1
}
assert(n < composites.head._1)
val prime = n
n += 1
composites.enqueue((prime.toLong * prime.toLong, prime))
prime
}
Iterator.continually(advance)
}
Is there a straightforward way to translate the code with streams to code with iterators? Or is there a simple way to make my first attempt more memory efficient?
It's easier to think in terms of streams; I'd rather start that way, then tweak my code if necessary.
I guess it's a bug in current Stream implementation.
primes().drop(999).head works fine:
primes().drop(999).head
// Int = 7919
You'll get OutOfMemoryError with stored Stream like this:
val prs = primes()
prs.drop(999).head
// Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
The problem here with class Cons implementation: it contains not only calculated tail, but also a function to calculate this tail. Even when the tail is calculated and function is not needed any more!
In this case functions are extremely heavy, so you'll get OutOfMemoryError even with 1000 functions stored.
We have to drop that functions somehow.
Intuitive fix is failed:
val prs = primes().iterator.toStream
prs.drop(999).head
// Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded
With iterator on Stream you'll get StreamIterator, with StreamIterator#toStream you'll get initial heavy Stream.
Workaround
So we have to convert it manually:
def toNewStream[T](i: Iterator[T]): Stream[T] =
if (i.hasNext) Stream.cons(i.next, toNewStream(i))
else Stream.empty
val prs = toNewStream(primes().iterator)
// Stream[Int] = Stream(2, ?)
prs.drop(999).head
// Int = 7919
In your first code, you should postpone the merging until the square of a prime is seen amongst the candidates. This will drastically reduce the number of streams in use, radically improving your memory usage issues. To get the 1000th prime, 7919, we only need to consider primes not above its square root, 88. That's just 23 primes/streams of their multiples, instead of 999 (22, if we ignore the evens from the outset). For the 10,000th prime, it's the difference between having 9999 streams of multiples and just 66. And for the 100,000th, only 189 are needed.
The trick is to separate the primes being consumed from the primes being produced, via a recursive invocation:
def primes(): Stream[Int] = {
def merge(a: Stream[Int], b: Stream[Int]): Stream[Int] = {
def next = a.head min b.head
Stream.cons(next, merge(if (a.head == next) a.tail else a,
if (b.head == next) b.tail else b))
}
def test(n: Int, q: Int,
compositeStream: Stream[Int],
primesStream: Stream[Int]): Stream[Int] = {
if (n == q) test(n+2, primesStream.tail.head*primesStream.tail.head,
merge(compositeStream,
Stream.from(q, 2*primesStream.head).tail),
primesStream.tail)
else if (n == compositeStream.head) test(n+2, q, compositeStream.tail,
primesStream)
else Stream.cons(n, test(n+2, q, compositeStream, primesStream))
}
Stream.cons(2, Stream.cons(3, Stream.cons(5,
test(7, 25, Stream.from(9, 6), primes().tail.tail))))
}
As an added bonus, there's no need to store the squares of primes as Longs. This will also be much faster and have better algorithmic complexity (time and space) as it avoids doing a lot of superfluous work. Ideone testing shows it runs at about ~ n1.5..1.6 empirical orders of growth in producing up to n = 80,000 primes.
There's still an algorithmic problem here: the structure that is created here is still a linear left-leaning structure (((mults_of_2 + mults_of_3) + mults_of_5) + ...), with more frequently-producing streams situated deeper inside it (so the numbers have more levels to percolate through, going up). The right-leaning structure should be better, mults_of_2 + (mults_of_3 + (mults_of_5 + ...)). Making it a tree should bring a real improvement in time complexity (pushing it down typically to about ~ n1.2..1.25). For a related discussion, see this haskellwiki page.
The "real" imperative sieve of Eratosthenes usually runs at around ~ n1.1 (in n primes produced) and an optimal trial division sieve at ~ n1.40..1.45. Your original code runs at about cubic time, or worse. Using imperative mutable array is usually the fastest, working by segments (a.k.a. the segmented sieve of Eratosthenes).
In the context of your second code, this is how it is achieved in Python.
Is there a straightforward way to translate the code with streams to code with iterators? Or is there a simple way to make my first attempt more memory efficient?
#Will Ness has given you an improved answer using Streams and given reasons why your code is taking so much memory and time as in adding streams early and a left-leaning linear structure, but no one has completely answered the second (or perhaps main) part of your question as to can a true incremental Sieve of Eratosthenes be implemented with Iterator's.
First, we should properly credit this right-leaning algorithm of which your first code is a crude (left-leaning) example (since it prematurely adds all prime composite streams to the merge operations), which is due to Richard Bird as in the Epilogue of Melissa E. O'Neill's definitive paper on incremental Sieve's of Eratosthenes.
Second, no, it isn't really possible to substitute Iterator's for Stream's in this algorithm as it depends on moving through a stream without restarting the stream, and although one can access the head of an iterator (the current position), using the next value (skipping over the head) to generate the rest of the iteration as a stream requires building a completely new iterator at a terrible cost in memory and time. However, we can use an Iterator to output the results of the sequence of primes in order to minimize memory use and make it easy to use iterator higher order functions, as you will see in my code below.
Now Will Ness has walked you though the principles of postponing adding prime composite streams to the calculations until they are needed, which works well when one is storing these in a structure such as a Priority Queue or a HashMap and was even missed in the O'Neill paper, but for the Richard Bird algorithm this is not necessary as future stream values will not be accessed until needed so are not stored if the Streams are being properly lazily built (as is lazily and left-leaning). In fact, this algorithm doesn't even need the memorization and overheads of a full Stream as each composite number culling sequence only moves forward without reference to any past primes other than one needs a separate source of the base primes, which can be supplied by a recursive call of the same algorithm.
For ready reference, let's list the Haskell code of the Richard Bird algorithms as follows:
primes = 2:([3..] ‘minus‘ composites)
where
composites = union [multiples p | p <− primes]
multiples n = map (n*) [n..]
(x:xs) ‘minus‘ (y:ys)
| x < y = x:(xs ‘minus‘ (y:ys))
| x == y = xs ‘minus‘ ys
| x > y = (x:xs) ‘minus‘ ys
union = foldr merge []
where
merge (x:xs) ys = x:merge’ xs ys
merge’ (x:xs) (y:ys)
| x < y = x:merge’ xs (y:ys)
| x == y = x:merge’ xs ys
| x > y = y:merge’ (x:xs) ys
In the following code I have simplified the 'minus' function (called "minusStrtAt") as we don't need to build a completely new stream but can incorporate the composite subtraction operation with the generation of the original (in my case odds only) sequence. I have also simplified the "union" function (renaming it as "mrgMltpls")
The stream operations are implemented as a non memoizing generic Co Inductive Stream (CIS) as a generic class where the first field of the class is the value of the current position of the stream and the second is a thunk (a zero argument function that returns the next value of the stream through embedded closure arguments to another function).
def primes(): Iterator[Long] = {
// generic class as a Co Inductive Stream element
class CIS[A](val v: A, val cont: () => CIS[A])
def mltpls(p: Long): CIS[Long] = {
var px2 = p * 2
def nxtmltpl(cmpst: Long): CIS[Long] =
new CIS(cmpst, () => nxtmltpl(cmpst + px2))
nxtmltpl(p * p)
}
def allMltpls(mps: CIS[Long]): CIS[CIS[Long]] =
new CIS(mltpls(mps.v), () => allMltpls(mps.cont()))
def merge(a: CIS[Long], b: CIS[Long]): CIS[Long] =
if (a.v < b.v) new CIS(a.v, () => merge(a.cont(), b))
else if (a.v > b.v) new CIS(b.v, () => merge(a, b.cont()))
else new CIS(b.v, () => merge(a.cont(), b.cont()))
def mrgMltpls(mlps: CIS[CIS[Long]]): CIS[Long] =
new CIS(mlps.v.v, () => merge(mlps.v.cont(), mrgMltpls(mlps.cont())))
def minusStrtAt(n: Long, cmpsts: CIS[Long]): CIS[Long] =
if (n < cmpsts.v) new CIS(n, () => minusStrtAt(n + 2, cmpsts))
else minusStrtAt(n + 2, cmpsts.cont())
// the following are recursive, where cmpsts uses oddPrms and
// oddPrms uses a delayed version of cmpsts in order to avoid a race
// as oddPrms will already have a first value when cmpsts is called to generate the second
def cmpsts(): CIS[Long] = mrgMltpls(allMltpls(oddPrms()))
def oddPrms(): CIS[Long] = new CIS(3, () => minusStrtAt(5L, cmpsts()))
Iterator.iterate(new CIS(2L, () => oddPrms()))
{(cis: CIS[Long]) => cis.cont()}
.map {(cis: CIS[Long]) => cis.v}
}
The above code generates the 100,000th prime (1299709) on ideone in about 1.3 seconds with about a 0.36 second overhead and has an empirical computational complexity to 600,000 primes of about 1.43. The memory use is negligible above that used by the program code.
The above code could be implemented using the built-in Scala Streams, but there is a performance and memory use overhead (of a constant factor) that this algorithm does not require. Using Streams would mean that one could use them directly without the extra Iterator generation code, but as this is used only for final output of the sequence, it doesn't cost much.
To implement some basic tree folding as Will Ness has suggested, one only needs to add a "pairs" function and hook it into the "mrgMltpls" function:
def primes(): Iterator[Long] = {
// generic class as a Co Inductive Stream element
class CIS[A](val v: A, val cont: () => CIS[A])
def mltpls(p: Long): CIS[Long] = {
var px2 = p * 2
def nxtmltpl(cmpst: Long): CIS[Long] =
new CIS(cmpst, () => nxtmltpl(cmpst + px2))
nxtmltpl(p * p)
}
def allMltpls(mps: CIS[Long]): CIS[CIS[Long]] =
new CIS(mltpls(mps.v), () => allMltpls(mps.cont()))
def merge(a: CIS[Long], b: CIS[Long]): CIS[Long] =
if (a.v < b.v) new CIS(a.v, () => merge(a.cont(), b))
else if (a.v > b.v) new CIS(b.v, () => merge(a, b.cont()))
else new CIS(b.v, () => merge(a.cont(), b.cont()))
def pairs(mltplss: CIS[CIS[Long]]): CIS[CIS[Long]] = {
val tl = mltplss.cont()
new CIS(merge(mltplss.v, tl.v), () => pairs(tl.cont()))
}
def mrgMltpls(mlps: CIS[CIS[Long]]): CIS[Long] =
new CIS(mlps.v.v, () => merge(mlps.v.cont(), mrgMltpls(pairs(mlps.cont()))))
def minusStrtAt(n: Long, cmpsts: CIS[Long]): CIS[Long] =
if (n < cmpsts.v) new CIS(n, () => minusStrtAt(n + 2, cmpsts))
else minusStrtAt(n + 2, cmpsts.cont())
// the following are recursive, where cmpsts uses oddPrms and
// oddPrms uses a delayed version of cmpsts in order to avoid a race
// as oddPrms will already have a first value when cmpsts is called to generate the second
def cmpsts(): CIS[Long] = mrgMltpls(allMltpls(oddPrms()))
def oddPrms(): CIS[Long] = new CIS(3, () => minusStrtAt(5L, cmpsts()))
Iterator.iterate(new CIS(2L, () => oddPrms()))
{(cis: CIS[Long]) => cis.cont()}
.map {(cis: CIS[Long]) => cis.v}
}
The above code generates the 100,000th prime (1299709) on ideone in about 0.75 seconds with about a 0.37 second overhead and has an empirical computational complexity to the 1,000,000th prime (15485863) of about 1.09 (5.13 seconds). The memory use is negligible above that used by the program code.
Note that the above codes are completely functional in that there is no mutable state used whatsoever, but that the Bird algorithm (or even the tree folding version) isn't as fast as using a Priority Queue or HashMap for larger ranges as the number of operations to handle the tree merging has a higher computational complexity than the log n overhead of the Priority Queue or the linear (amortized) performance of a HashMap (although there is a large constant factor overhead to handle the hashing so that advantage isn't really seen until some truly large ranges are used).
The reason that these codes use so little memory is that the CIS streams are formulated with no permanent reference to the start of the streams so that the streams are garbage collected as they are used, leaving only the minimal number of base prime composite sequence place holders, which as Will Ness has explained is very small - only 546 base prime composite number streams for generating the first million primes up to 15485863, each placeholder only taking a few 10's of bytes (eight for the Long number, eight for the 64-bit function reference, with another couple of eight bytes for the pointer to the closure arguments and another few bytes for function and class overheads, for a total per stream placeholder of perhaps 40 bytes, or a total of not much more than 20 Kilobytes for generating the sequence for a million primes).
If you just want an infinite stream of primes, this is the most elegant way in my opinion:
def primes = {
def sieve(from : Stream[Int]): Stream[Int] = from.head #:: sieve(from.tail.filter(_ % from.head != 0))
sieve(Stream.from(2))
}

foldLeft early termination in a Stream[Boolean]?

I have a:
val a : Stream[Boolean] = ...
When I foldLeft it as follows
val b = a.foldLeft(false)(_||_)
Will it terminate when it finds the first true value in the stream? If not, how do I make it to?
It would not terminate on the first true. You can use exists instead:
val b = a.exists(identity)
No it won't terminate early. This is easy to illustrate:
val a : Stream[Boolean] = Stream.continually(true)
// won't terminate because the strea
val b = a.foldLeft(false)(_||_)
stew showed that a simple solution to terminate early, in your specific case, is
val b = a.exists(identity).
Even simpler, this is equivalent to:
val b = a.contains(true)
A more general solution which unlike the above is also applicable if you actually need a fold, is to use recursion (note that here I am assuming the stream is non-empty, for simplicity):
def myReduce( s: Stream[Boolean] ): Boolean = s.head || myReduce( s.tail )
val b = myReduce(a)
Now the interesting thing of the recursive solution is how it can be used in a more general use case where you actually need to accumulate the values in some way (which is what fold is for) and still terminate early. Say that you want to add the values of a stream of ints using an add method that will "terminate" early in a way similar to || (in this case, it does not evaluate its right hand side if the left hand side is > 100):
def add(x: Int, y: => Int) = if ( x >= 100 ) x else x + y
val a : Stream[Int] = Stream.range(0, Int.MaxValue)
val b = a.foldLeft(0)(add(_, _))
The last line won't terminate, much like in your example. But you can fix it like this:
def myReduce( s: Stream[Int] ): Int = add( s.head, myReduce( s.tail ) )
val b = myReduce(a)
WARNING: there is a significant downside to this approach though: myReduce here is not tail recursive, meaning that it will blow your stack if iterating over too many elements of the stream.
Yet another solution, which does nto blow the stack, is this:
val b = a.takeWhile(_ <= 100).foldLeft(0)(_ + _)
But I fear I have gone really too far on the off topic side, so I'd better stop now.
You could use takeWhile to extract the prefix of the Stream on which you want to operate and then apply foldLeft to that.

Infinite streams in Scala

Say I have a function, for example the old favourite
def factorial(n:Int) = (BigInt(1) /: (1 to n)) (_*_)
Now I want to find the biggest value of n for which factorial(n) fits in a Long. I could do
(1 to 100) takeWhile (factorial(_) <= Long.MaxValue) last
This works, but the 100 is an arbitrary large number; what I really want on the left hand side is an infinite stream that keeps generating higher numbers until the takeWhile condition is met.
I've come up with
val s = Stream.continually(1).zipWithIndex.map(p => p._1 + p._2)
but is there a better way?
(I'm also aware I could get a solution recursively but that's not what I'm looking for.)
Stream.from(1)
creates a stream starting from 1 and incrementing by 1. It's all in the API docs.
A Solution Using Iterators
You can also use an Iterator instead of a Stream. The Stream keeps references of all computed values. So if you plan to visit each value only once, an iterator is a more efficient approach. The downside of the iterator is its mutability, though.
There are some nice convenience methods for creating Iterators defined on its companion object.
Edit
Unfortunately there's no short (library supported) way I know of to achieve something like
Stream.from(1) takeWhile (factorial(_) <= Long.MaxValue) last
The approach I take to advance an Iterator for a certain number of elements is drop(n: Int) or dropWhile:
Iterator.from(1).dropWhile( factorial(_) <= Long.MaxValue).next - 1
The - 1 works for this special purpose but is not a general solution. But it should be no problem to implement a last method on an Iterator using pimp my library. The problem is taking the last element of an infinite Iterator could be problematic. So it should be implemented as method like lastWith integrating the takeWhile.
An ugly workaround can be done using sliding, which is implemented for Iterator:
scala> Iterator.from(1).sliding(2).dropWhile(_.tail.head < 10).next.head
res12: Int = 9
as #ziggystar pointed out, Streams keeps the list of previously computed values in memory, so using Iterator is a great improvment.
to further improve the answer, I would argue that "infinite streams", are usually computed (or can be computed) based on pre-computed values. if this is the case (and in your factorial stream it definately is), I would suggest using Iterator.iterate instead.
would look roughly like this:
scala> val it = Iterator.iterate((1,BigInt(1))){case (i,f) => (i+1,f*(i+1))}
it: Iterator[(Int, scala.math.BigInt)] = non-empty iterator
then, you could do something like:
scala> it.find(_._2 >= Long.MaxValue).map(_._1).get - 1
res0: Int = 22
or use #ziggystar sliding solution...
another easy example that comes to mind, would be fibonacci numbers:
scala> val it = Iterator.iterate((1,1)){case (a,b) => (b,a+b)}.map(_._1)
it: Iterator[Int] = non-empty iterator
in these cases, your'e not computing your new element from scratch every time, but rather do an O(1) work for every new element, which would improve your running time even more.
The original "factorial" function is not optimal, since factorials are computed from scratch every time. The simplest/immutable implementation using memoization is like this:
val f : Stream[BigInt] = 1 #:: (Stream.from(1) zip f).map { case (x,y) => x * y }
And now, the answer can be computed like this:
println( "count: " + (f takeWhile (_<Long.MaxValue)).length )
The following variant does not test the current, but the next integer, in order to find and return the last valid number:
Iterator.from(1).find(i => factorial(i+1) > Long.MaxValue).get
Using .get here is acceptable, since find on an infinite sequence will never return None.