MATLAB - Adaptive Step Size Runge-Kutta - matlab

I've programmed in MATLAB an adaptive step size RK4 to solve a system of ODEs. The code runs without error, however it does not produce the desired curve when I try to plot x against y. Instead of being a toroidal shape, I simply get a flat line. This is evident from the fact that r is outputting a constant value. After checking the outputs of each line, they are not outputting constants or errors or inf or NaN, rather they are outputting both a real and imaginary component (complex numbers). I have no idea as to why this is occurring and I believe it to be the source of my trouble.
function AdaptRK4()
parsec = 3.08*10^18;
r_1 = 8.5*1000.0*parsec; % in cm
theta_1 = 0.0;
a = 0.5*r_1;
gam = 1;
grav = 6.6720*10^-8;
amsun = 1.989*10^33;
amg = 1.5d11*amsun;
gm = grav*amg;
u_1 = 20.0*10^5;
v = sqrt(gm/r_1);
time = 0.0;
epsilon = 0.00001;
m1 = 0.5;
m2 = 0.5;
m3 = 0.5;
i = 1;
nsteps = 50000;
deltat = 5.0*10^12;
angmom = r_1*v;
angmom2 = angmom^2.0;
e = -2*10^5.0*gm/r_1+u_1*u_1/2.0+angmom2/(2.0*r_1*r_1);
for i=1:nsteps
deltat = min(deltat,nsteps-time);
fk3_1 = deltat*u_1;
fk4_1 = deltat*(-gm*r_1*r_1^(-gam)/(a+r_1)^(3- gam)+angmom2/(r_1^3.0));
fk5_1 = deltat*(angmom/(r_1^2.0));
r_2 = r_1+fk3_1/4.0;
u_2 = u_1+fk4_1/4.0;
theta_2 = theta_1+fk5_1/4.0;
fk3_2 = deltat*u_2;
fk4_2 = deltat*(-gm*r_2*r_2^(-gam)/(a+r_2)^(3-gam)+angmom2/(r_2^3.0));
fk5_2 = deltat*(angmom/(r_2^2.0));
r_3 = r_1+(3/32)*fk3_1 + (9/32)*fk3_2;
u_3 = u_1+(3/32)*fk4_1 + (9/32)*fk4_2;
theta_3 = theta_1+(3/32)*fk5_1 + (9/32)*fk5_2;
fk3_3 = deltat*u_3;
fk4_3 = deltat*(-gm*r_3*r_3^(-gam)/(a+r_3)^(3-gam)+angmom2/(r_3^3.0));
fk5_3 = deltat*(angmom/(r_3^2.0));
r_4 = r_1+(1932/2197)*fk3_1 - (7200/2197)*fk3_2 + (7296/2197)*fk3_3;
u_4 = u_1+(1932/2197)*fk4_1 - (7200/2197)*fk4_2 + (7296/2197)*fk4_3;
theta_4 = theta_1+(1932/2197)*fk5_1 - (7200/2197)*fk5_2 + (7296/2197)*fk5_3;
fk3_4 = deltat*u_4;
fk4_4 = deltat*(-gm*r_4*r_4^(-gam)/(a+r_4)^(3-gam)+angmom2/(r_4^3.0));
fk5_4 = deltat*(angmom/(r_4^2.0));
r_5 = r_1+(439/216)*fk3_1 - 8*fk3_2 + (3680/513)*fk3_3 - (845/4104)*fk3_4;
u_5 = u_1+(439/216)*fk4_1 - 8*fk4_2 + (3680/513)*fk4_3 - (845/4104)*fk4_4;
theta_5 = theta_1+(439/216)*fk5_1 - 8*fk5_2 + (3680/513)*fk5_3 - (845/4104)*fk5_4;
fk3_5 = deltat*u_5;
fk4_5 = deltat*(-gm*r_5*r_5^(-gam)/(a+r_5)^(3-gam)+angmom2/(r_5^3.0));
fk5_5 = deltat*(angmom/(r_5^2.0));
r_6 = r_1-(8/27)*fk3_1 - 2*fk3_2 - (3544/2565)*fk3_3 + (1859/4104)*fk3_4-(11/40)*fk3_5;
u_6 = u_1-(8/27)*fk4_1 - 2*fk4_2 - (3544/2565)*fk4_3 + (1859/4104)*fk4_4-(11/40)*fk4_5;
theta_6 = theta_1-(8/27)*fk5_1 - 2*fk5_2 - (3544/2565)*fk5_3 + (1859/4104)*fk5_4-(11/40)*fk5_5;
fk3_6 = deltat*u_6;
fk4_6 = deltat*(-gm*r_6*r_6^(-gam)/(a+r_6)^(3-gam)+angmom2/(r_6^3.0));
fk5_6 = deltat*(angmom/(r_6^2.0));
fm3_1 = m1 + 25*fk3_1/216+1408*fk3_3/2565+2197*fk3_4/4104-fk3_5/5;
fm4_1 = m2 + 25*fk4_1/216+1408*fk4_3/2565+2197*fk4_4/4104-fk4_5/5;
fm5_1 = m3 + 25*fk5_1/216+1408*fk5_3/2565+2197*fk5_4/4104-fk5_5/5;
fm3_2 = m1 + 16*fk3_1/135+6656*fk3_3/12825+28561*fk3_4/56430-9*fk3_5/50+2*fk3_6/55;
fm4_2 = m2 + 16*fk4_1/135+6656*fk4_3/12825+28561*fk4_4/56430-9*fk4_5/50+2*fk4_6/55;
fm5_2 = m3 + 16*fk5_1/135+6656*fk5_3/12825+28561*fk5_4/56430-9*fk5_5/50+2*fk5_6/55;
R3 = abs(fm3_1-fm3_2)/deltat;
R4 = abs(fm4_1-fm4_2)/deltat;
R5 = abs(fm5_1-fm5_2)/deltat;
err3 = 0.84*(epsilon/R3)^(1/4);
err4 = 0.84*(epsilon/R4)^(1/4);
err5 = 0.84*(epsilon/R5)^(1/4);
if R3<= epsilon
time = time+deltat;
fm3 = fm3_1;
i = i+1;
deltat = err3*deltat;
end
if R4<= epsilon
time = time+deltat;
fm4 = fm4_1;
i = i+1;
deltat = err4*deltat;
end
if R5<= epsilon
time = time+deltat;
fm5 = fm5_1;
i = i+1;
deltat = err5*deltat;
end
e=2*gm^2.0/(2*angmom2);
ecc=(1.0+(2.0*e*angmom2)/(gm^2.0))^0.5;
x(i)=r_1*cos(theta_1)/(1000.0*parsec);
y(i)=r_1*sin(theta_1)/(1000.0*parsec);
time=time+deltat;
r(i)=r_1;
time1(i)=time;
end
figure()
plot(x,y, '-k');
TeXString = title('Plot of Orbit in Gamma Potential Obtained Using RK4')
xlabel('x')
ylabel('y')

You are getting complex values because at some point npts - time < 0. You may want to print out the values of deltat to check the error.
Also, your code doesn't seem to take into account the case when the error estimate is larger than your tolerance. When your error estimate is greater than your tolerance you have to:
Shift back the time AND solution
calculate a new step-size based on a formula, and
recalculate your solution and error estimate.
The fact that you don't know how many iterations you will have to go through makes the use of a for-loop for adaptive runge Kutta a bit awkward. I suggest using a while loop instead.

You are using "i" in your code. "i" returns the basic imaginary unit. "i" is equivalent to sqrt(-1). Try to use another identifier in your loops and only use "i" or "j" in calculations where complex numbers are involved.

Related

Issues with maximum likelihood estimation of realGARCH(1,1) in matlab

I am having some trouble estimating the parameter for the log-linear realized Garch(1,1) model. The parameter values which I get from the optimisation are different from those derived in the paper and I'm not sure where I am going wrong. Any help would be great. The specification of the model from (Hansen et al. (2012)) is:
Realized GARCH specification
And the likelihood function is given by:
Log Likelihood
I am using the same data as used by Hansen and co-authors which can retrieved from the rugarch package with the command data(spyreal).
My matlab code is
function output = loglikRV(param, data)
r = data.SPY_OC;
RV = data.SPY_RK;
logRV = log(RV);
T = numel(RV); % time sample size
alpha0 = param(1);
alpha1 = param(2);
alpha2 = param(3);
omega0 = param(4);
omega1 = param(5);
omega2 = param(6);
omega3 = param(7);
sigmamu2 = param(8);
z = zeros(T,1);
logh = zeros(T,1);
u = zeros(T,1);
llhs = zeros(T,1);
logh(1) = 8.8296e-05;
u(1) = 0.005;
z(1) = 0.005;
llhs(1) = 0.005;
for i = 2:T
logh(i) = alpha0 + alpha1*logh(i-1) + alpha2*logRV(i-1);
z(i) = r(i) / sqrt(exp(logh(i)));
u(i) = logRV(i) - omega0 - omega1*logh(i) - omega2*z(i) - omega3*(z(i)^2 - 1);
llhs(i) = -(1/2)*(log(2*pi) + logh(i) + z(i)^2) - (1/2)*(log(2*pi) + log(sigmamu2) + u(1)^2 / sigmamu2);
end
output = sum(llhs(2:T-1));
return
And I am optimising this using the Matlab fmincon function with the code as shown below:
clear;close all;
RVfinal = readtable('spyreal.xlsx');
objfun = #(param)(-loglikRV(param,RVfinal)); % negative of the log-likelihood function
param0 = [0.07048753,0.43272574,0.52944743,-0.19368728,1.02540217,-0.06100213, 0.07437231, 0.38];
% constraints in the optimization
A = []; b = []; % no inequality constraints
Aeq=[]; beq=[]; % no equality constraints
% -- MLE Optimization using "fmincon" --
optim_options = optimset('Display','off','TolX',1e-4,'TolFun',1e-4);
[mymle,fval] = fmincon(objfun,param0,A,b,Aeq,beq,[],[],[],optim_options);
mymle
Thank You!

Numerical Integration by Simpsons method

I am trying to solve this integration by simpsons method and plot the result in a figure.The figure is taking only the value of P0= -6 from the for loop. When I set I(K,P) it gives the error:
Attempted to access P0(0); index must be a positive integer or logical
How can I solve it?
alpha = 45;
beta = 185;
gamma_e = 116;
% Gain values
G_ei = -18.96;
G_ee = 18.52;
G_sr = -0.26;
G_rs = 16.92;
G_es = 2.55;
G_re = 4.67;
G_se = 0.73;
G_sn = 2.78;
G_esre = G_es*G_sr*G_re;
G_srs = G_sr*G_rs;
G_ese = G_es*G_se;
G_esn = G_es*G_sn;
t_0 = 0.085; % corticothalamic loop delay in second
r_e = 0.086; % Excitatory axon range in metre
f = linspace(-40,40,500); % f = frequency in Hz
w = 2*pi*f; % angular frequency in radian per second
delt_P = 0.5;
L=zeros(1,500);
Q=repmat(L,1);
P=repmat(L,1);
%%%%%%%%%%%%% integration %%%%%%%%%%%%
a = -80*pi;
b = 80*pi;
n=500;
I=repmat(L,1);
P_initial = repmat(L,1);
P_shift = repmat(L,1);
p = repmat(L,1);
for k = 1:length(w)
for P0 = [6 -6]
L_initial = #(w1) (1-((1i*w1)/alpha))^(-1)*(1-((1i*w1)/beta))^(-1);
Q_initial = #(w1) (1/(r_e^2))*((1-((1i*w1)/gamma_e))^(2) - (1/(1-G_ei*L_initial(w1)))*....
(L_initial(w1)*G_ee + (exp(1i*w1*t_0)*(L_initial(w1)^2*G_ese +L_initial(w1)^3*G_esre))/(1-L_initial(w1)^2*G_srs)));
P_initial = #(w1) (pi/r_e^4)* (abs((L_initial(w1)^2*G_esn)/((1-L_initial(w1)^2*G_srs)*....
(1-G_ei*L_initial(w1)))))^2 * abs((atan2((imag(Q_initial(w1))),(real(Q_initial(w1)))))/imag(Q_initial(w1)));
G = 150*exp(- (f - P0).^2./(2*(delt_P).^2));
P2 = #(w1) G(k) + P_initial(w1);
L_shift = #(w1) (1-((1i*(w(k)-w1))/alpha))^(-1)* (1-((1i*(w(k)-w1))/beta))^(-1);
Q_shift = #(w1) (1/(r_e^2))*((1-((1i*(w(k)-w1))/gamma_e))^(2) - (1/(1-G_ei*L_shift(w1)))*...
(L_shift(w1)*G_ee + (exp(1i*(w(k)-w1)*t_0)*(L_shift(w1)^2*G_ese +L_shift(w1)^3*G_esre))/(1-L_shift(w1)^2*G_srs)));
P_shift = #(w1) (pi/r_e^4)* (abs((L_shift(w1)^2*G_esn)/((1-L_shift(w1)^2*G_srs)*(1-G_ei*L_shift(w1)))))^2 *....
abs((atan2((imag(Q_shift(w1))),(real(Q_shift(w1)))))/imag(Q_shift(w1)));
p = #(w1) P2(w1)*P_shift(w1); % Power spectrum formula for P(w1)*p(w-w1)
I(k) = simprl(p,a,b,n);
end
end
figure(1)
plot(f,I,'r--')
figure(2)
plot(f,G,'k')
At the moment you only use the results for P0 = -6 as you save them in I(k). First you save the result for P0 = 6 later you overwrite it and save the other. The results of P0 = 6are neither used nor saved. If you write your code as follows this will be clarifyied.
for k = 1:length(w)
L_shift = #(w1) (1-((1i*(w(k)-w1))/alpha))^(-1)* (1-((1i*(w(k)-w1))/beta))^(-1);
Q_shift = #(w1) (1/(r_e^2))*((1-((1i*(w(k)-w1))/gamma_e))^(2) - (1/(1-G_ei*L_shift(w1)))*...
(L_shift(w1)*G_ee + (exp(1i*(w(k)-w1)*t_0)*(L_shift(w1)^2*G_ese +L_shift(w1)^3*G_esre))/(1-L_shift(w1)^2*G_srs)));
P_shift = #(w1) (pi/r_e^4)* (abs((L_shift(w1)^2*G_esn)/((1-L_shift(w1)^2*G_srs)*(1-G_ei*L_shift(w1)))))^2 *....
abs((atan2((imag(Q_shift(w1))),(real(Q_shift(w1)))))/imag(Q_shift(w1)));
for P0 = [6 -6]
G = 150*exp(- (f - P0).^2./(2*(delt_P).^2));
P2 = #(w1) G(k) + P_initial(w1);
p = #(w1) P2(w1)*P_shift(w1);
I(k) = simprl(p,a,b,n);
end
end
You can't access I(k,P) as I is an vector not an matrix. However this will give you Index exceeds matrix dimensions. You could save the results for P0 = -6 in one variable and P0 = 6 in the other variable as the results in your code do not depent on each other.

Efficient solution to object detection algorithm

I'm trying to implement this paper 'Salient Object detection by composition' here is the link: http://research.microsoft.com/en-us/people/yichenw/iccv11_salientobjectdetection.pdf
I have implemented the algorithm but it takes a long time to execute and display the output. I'm using 4 for loops in the code(Using for loops is the only way I could think of to implement this algorithm.) I have searched online for MATLAB code, but couldn't find anything. So can anyone please suggest any faster way to implement the algorithm. Also in the paper they(the authors) say that they have implemented the code using MATLAB and it runs quickly. So there definitely is a way to write the code more efficiently.
I appreciate any hint or code to execute this algorithm efficiently.
clc
clear all
close all
%%instructions to run segment.cpp
%to run this code
%we need an output image
%segment sigma K min input output
%sigma: used for gaussian smoothing of the image
%K: scale of observation; larger K means larger components in segmentation
%min: minimum component size enforced by post processing
%%
%calculating composition cost for each segment
I_org = imread('segment\1.ppm');
I = imread('segment\output1.ppm');
[rows,cols,dims] = size(I);
pixels = zeros(rows*cols,dims);
red_channel = I(:,:,1);
green_channel = I(:,:,2);
blue_channel = I(:,:,3);
[unique_pixels,count_pixels] = countPixels(I);
no_segments = size(count_pixels,1);
area_segments = count_pixels ./ (rows * cols);
appearance_distance = zeros(no_segments,no_segments);
spatial_distance = zeros(no_segments,no_segments);
thresh = multithresh(I_org,11);
thresh_values = [0 thresh];
for i = 1:no_segments
leave_pixel = unique_pixels(i,:);
mask_image = ((I(:,:,1) == leave_pixel(1)) & (I(:,:,2) == leave_pixel(2)) & (I(:,:,3) == leave_pixel(3)));
I_i(:,:,1) = I_org(:,:,1) .* uint8((mask_image));
I_i(:,:,2) = I_org(:,:,2) .* uint8((mask_image));
I_i(:,:,3) = I_org(:,:,3) .* uint8((mask_image));
LAB_trans = makecform('srgb2lab');
I_i_LAB = applycform(I_i,LAB_trans);
L_i_LAB = imhist(I_i_LAB(:,:,1));
A_i_LAB = imhist(I_i_LAB(:,:,2));
B_i_LAB = imhist(I_i_LAB(:,:,3));
for j = i:no_segments
leave_pixel = unique_pixels(j,:);
mask_image = ((I(:,:,1) == leave_pixel(1)) & (I(:,:,2) == leave_pixel(2)) & (I(:,:,3) == leave_pixel(3)));
I_j(:,:,1) = I_org(:,:,1) .* uint8((mask_image));
I_j(:,:,2) = I_org(:,:,2) .* uint8((mask_image));
I_j(:,:,3) = I_org(:,:,3) .* uint8((mask_image));
I_j_LAB = applycform(I_j,LAB_trans);
L_j_LAB = imhist(I_j_LAB(:,:,1));
A_j_LAB = imhist(I_j_LAB(:,:,2));
B_j_LAB = imhist(I_j_LAB(:,:,3));
appearance_distance(i,j) = sum(min(L_i_LAB,L_j_LAB) + min(A_i_LAB,A_j_LAB) + min(B_i_LAB,B_j_LAB));
spatial_distance(i,j) = ModHausdorffDist(I_i,I_j) / max(rows,cols);
end
end
spatial_distance = spatial_distance ./ max(max(spatial_distance));
max_apperance_distance = max(max(appearance_distance));
composition_cost = ((1 - spatial_distance) .* appearance_distance) + (spatial_distance * max_apperance_distance);
%%
%input parameters for computation
window_size = 9; %rows and colums are considered to be same
window = ones(window_size);
additional_elements = (window_size - 1)/2;
I_temp(:,:,1) = [zeros(additional_elements,cols);I(:,:,1);zeros(additional_elements,cols)];
I_new(:,:,1) = [zeros(rows + (window_size - 1),additional_elements) I_temp(:,:,1) zeros(rows + (window_size - 1),additional_elements)];
I_temp(:,:,2) = [zeros(additional_elements,cols);I(:,:,2);zeros(additional_elements,cols)];
I_new(:,:,2) = [zeros(rows + (window_size - 1),additional_elements) I_temp(:,:,2) zeros(rows + (window_size - 1),additional_elements)];
I_temp(:,:,3) = [zeros(additional_elements,cols);I(:,:,3);zeros(additional_elements,cols)];
I_new(:,:,3) = [zeros(rows + (window_size - 1),additional_elements) I_temp(:,:,3) zeros(rows + (window_size - 1),additional_elements)];
cost = zeros(rows,cols);
for i = additional_elements + 1:rows
for j = additional_elements+1:cols
I_windowed(:,:,1) = I_new(i-additional_elements:i+additional_elements,i-additional_elements:i+additional_elements,1);
I_windowed(:,:,2) = I_new(i-additional_elements:i+additional_elements,i-additional_elements:i+additional_elements,2);
I_windowed(:,:,3) = I_new(i-additional_elements:i+additional_elements,i-additional_elements:i+additional_elements,3);
[unique_pixels_w,count_pixels_w] = countPixels(I_windowed);
unique_pixels_w = setdiff(unique_pixels_w,[0 0 0],'rows');
inside_segment = setdiff(unique_pixels,unique_pixels_w);
outside_segments = setdiff(unique_pixels,inside_segment);
area_segment = count_pixels_w;
for k = 1:size(inside_pixels,1)
current_segment = inside_segment(k,:);
cost_curr_seg = sort(composition_cost(ismember(unique_pixels,current_segment,'rows'),:));
for l = 1:size(cost_curr_seg,2)
if(ismember(unique_pixels(l,:),outside_segments,'rows') && count_pixels(l) > 0)
composed_area = min(area_segment(k),count_pixels(l));
cost(i,j) = cost(i,j) + cost_curr_seg(l) * composed_area;
area_segment(k) = area_segment(k) - composed_area;
count_pixels(l) = count_pixels(l) - composed_area;
if area_segment(k) == 0
break
end
end
end
if area(k) > 0
cost(i,j) = cost(i,j) + max_apperance_distance * area_segment(k);
end
end
end
end
cost = cost / window_size;
The code for the countPixels function:
function [unique_rows,counts] = countPixels(I)
[rows,cols,dims] = size(I);
pixels_I = zeros(rows*cols,dims);
count = 1;
for i = 1:rows
for j = 1:cols
pixels_I(count,:) = reshape(I(i,j,:),[1,3]);
count = count + 1;
end
end
[unique_rows,~,ind] = unique(pixels_I,'rows');
counts = histc(ind,unique(ind));
end

Index exceeds matrix dimensions error in Runge-Kutta method: Matlab

I'm trying to make a time stepping code using the 4th order Runge-Kutta method but am running into issues indexing one of my values properly. My code is:
clc;
clear all;
L = 32; M = 32; N = 32; % No. of elements
Lx = 2; Ly = 2; Lz = 2; % Size of each element
dx = Lx/L; dy = Ly/M; dz = Lz/N; % Step size
Tt = 1;
t0 = 0; % Initial condition
T = 50; % Final time
dt = (Tt-t0)/T; % Determining time step interval
% Wave characteristics
H = 2; % Wave height
a = H/2; % Amplitude
Te = 6; % Period
omega = 2*pi/Te; % Wave rotational frequency
d = 25; % Water depth
x = 0; % Location of cylinder axis
u0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (u values)
v0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (v values)
w0(1:L,1:M,1:N,1) = 0; % Setting up solution space matrix (w values)
[k,L] = disp(d,omega); % Solving for k and wavelength using Newton-Raphson function
%u = zeros(1,50);
%v = zeros(1,50);
%w = zeros(1,50);
time = 1:1:50;
for t = 1:T
for i = 1:L
for j = 1:M
for k = 1:N
eta(i,j,k,t) = a*cos(omega*time(1,t);
u(i,j,k,1) = u0(i,j,k,1);
v(i,j,k,1) = v0(i,j,k,1);
w(i,j,k,1) = w0(i,j,k,1);
umag(i,j,k,t) = a*omega*(cosh(k*(d+eta(i,j,k,t))))/sinh(k*d);
vmag(i,j,k,t) = 0;
wmag(i,j,k,t) = -a*omega*(sinh(k*(d+eta(i,j,k,t))))/sinh(k*d);
uRHS(i,j,k,t) = umag(i,j,k,t)*cos(k*x-omega*t);
vRHS(i,j,k,t) = vmag(i,j,k,t)*sin(k*x-omega*t);
wRHS(i,j,k,t) = wmag(i,j,k,t)*sin(k*x-omega*t);
k1x(i,j,k,t) = dt*uRHS(i,j,k,t);
k2x(i,j,k,t) = dt*(0.5*k1x(i,j,k,t) + dt*uRHS(i,j,k,t));
k3x(i,j,k,t) = dt*(0.5*k2x(i,j,k,t) + dt*uRHS(i,j,k,t));
k4x(i,j,k,t) = dt*(k3x(i,j,k,t) + dt*uRHS(i,j,k,t));
u(i,j,k,t+1) = u(i,j,k,t) + (1/6)*(k1x(i,j,k,t) + 2*k2x(i,j,k,t) + 2*k3x(i,j,k,t) + k4x(i,j,k,t));
k1y(i,j,k,t) = dt*vRHS(i,j,k,t);
k2y(i,j,k,t) = dt*(0.5*k1y(i,j,k,t) + dt*vRHS(i,j,k,t));
k3y(i,j,k,t) = dt*(0.5*k2y(i,j,k,t) + dt*vRHS(i,j,k,t));
k4y(i,j,k,t) = dt*(k3y(i,j,k,t) + dt*vRHS(i,j,k,t));
v(i,j,k,t+1) = v(i,j,k,t) + (1/6)*(k1y(i,j,k,t) + 2*k2y(i,j,k,t) + 2*k3y(i,j,k,t) + k4y(i,j,k,t));
k1z(i,j,k,t) = dt*wRHS(i,j,k,t);
k2z(i,j,k,t) = dt*(0.5*k1z(i,j,k,t) + dt*wRHS(i,j,k,t));
k3z(i,j,k,t) = dt*(0.5*k2z(i,j,k,t) + dt*wRHS(i,j,k,t));
k4z(i,j,k,t) = dt*(k3z(i,j,k,t) + dt*wRHS(i,j,k,t));
w(i,j,k,t+1) = w(i,j,k,t) + (1/6)*(k1z(i,j,k,t) + 2*k2z(i,j,k,t) + 2*k3z(i,j,k,t) + k4z(i,j,k,t));
a(i,j,k,t+1) = ((u(i,j,k,t+1))^2 + (v(i,j,k,t+1))^2 + (w(i,j,k,t+1))^2)^0.5;
end
end
end
end
At the moment, the values seem to be fine for the first iteration but then I have the error Index exceeds matrix dimension in the line calculating eta. I understand that I am not correctly indexing the eta value but am not sure how to correct this.
My goal is to update the value of eta for each loop of t and then use that new eta value for the rest of the calculations.
I'm still quite new to programming and am trying to understand indexing, especially in 3 or 4 dimensional matrices and would really appreciate any advice in correctly calculating this value.
Thanks in advance for any advice!
You declare
time = 1:1:50;
which is just a row vector but access it here
eta(i,j,k,t) = a*cos(omega*time(i,j,k,t));
as if it were an array with 4 dimensions.
To correctly access element x of time you need to use syntax
time(1,x);
(as it is a 1 x 50 array)

Has fminsearch too many parameters?

I run this code in matlab to minimize the parameters of my function real_egarchpartial with fminsearch:
data = xlsread('return_cc_in.xlsx');
SPY = data(:,25);
dailyrange = xlsread('DR_in.xlsx');
drSPY= dailyrange(:,28);
startingVals = [mean(SPY); 0.041246; 0.70121; 0.05; 0.04; 0.45068; -0.1799; 1.0375; 0.06781; 0.070518];
T = size(SPY,1);
options = optimset('fminsearch');
options.Display = 'iter';
estimates = fminsearch(#real_egarchpartial, startingVals, options, SPY, drSPY);
[ll, lls, u]=real_egarchpartial(estimates, SPY, drSPY);
And I get this message:
Exiting: Maximum number of function evaluations has been exceeded
- increase MaxFunEvals option.
I put the original starting values. So I assumed they are corrects. I used fminsearch and not fmincon because my function hasn't constraints and with fminunc my function gets a lot of red messages.
the real_egarchpartial function is the following:
function [ll,lls,lh] = real_egarchpartial(parameters, data, x_rk)
mu = parameters(1);
omega = parameters(2);
beta = parameters(3);
tau1 = parameters(4);
tau2 = parameters(5);
gamma = parameters(6);
csi = parameters(7);
phi = parameters(8);
delta1 = parameters(9);
delta2 = parameters(10);
%Data and h are T by 1 vectors
T = size(data,1);
eps = data-mu;
lh = zeros(T,1);
h = zeros(T,1);
u = zeros(T,1);
%Must use a back Cast to start the algorithm
h(1)=var(data);
lh(1) = log(h(1));
z= eps/sqrt(h(1));
u(1) = rand(1);
lxRK = log(x_rk);
for t = 2:T;
lh(t) = omega + beta*lh(t-1) + tau1*z(t-1) + tau2*((z(t-1).^2)-1)+ gamma*u(t-1);
h(t)=exp(lh(t));
z = eps/sqrt(h(t));
end
for t = 2:T
u(t)= lxRK(t) - csi - phi*h(t) - delta1*z(t) - delta2*((z(t).^2)-1);
end
lls = 0.5*(log(2*pi) + lh + eps.^2./h);
ll = sum(lls);
Could someone explain what is wrong? Is there another function more efficient for my estimation? Any help will be appreciated! Thank you.