Scala: Triple Context Bounds, evidence parameters not found - scala

I have edited this to a simpler form of the question to which #Zhi Yuan Wang responded :
object ContBound {
def f2[A: Seq, B: Seq]: Unit = {
val a1: Seq[A] = evidence$1
val b2: Seq[B] = evidence$2
}
def f3[A: Seq, B: Seq, C: Seq]: Unit = {
val a1: Seq[A] = evidence$1
val b2: Seq[B] = evidence$2
val a3: Seq[C] = evidence$3
}
}
I get the following errors:
not found value evidence$1
not found value evidence$2
type mismatch; found :Seq[A] required: Seq[C]
despite getting the following in the REPL:
def f3[A: Seq, B: Seq, C: Seq]: Unit =
| {
| val a1: Seq[A] = evidence$1
| val b2: Seq[B] = evidence$2
| val a3: Seq[C] = evidence$3
| }
f3: [A, B, C](implicit evidence$1: Seq[A], implicit evidence$2: Seq[B], implicit evidence$3: Seq[C])Unit
Zhi's awnser is correct. The following compiles:
object ContBound {
def f2[A: Seq, B: Seq]: Unit = {
val a1: Seq[A] = evidence$1
val b2: Seq[B] = evidence$2
}
def f3[A: Seq, B: Seq, C: Seq]: Unit = {
val a1: Seq[A] = evidence$3
val b2: Seq[B] = evidence$4
val a3: Seq[C] = evidence$5
}
}
However I still don't see this as correct behaviour, as these are parameters for two different methods and methods are normally allowed to reuse parameter names.

Have you tried
def comma3[A: RParse, B: RParse, C: RParse, D](f: (A, B, C) => D): D =
expr match {
case CommaExpr(Seq(e1, e2, e3)) =>
f(evidence$3.get(e1), evidence$4.get(e2), evidence$5.get(e3))
}
since the the evidence$1 already used by
def comma3[]??

Related

Covariance between 3 types in Scala

I'm trying to see if there is a way to find a type W2 that is the super type of 2 types W and E.
In my solution E represents errors, and W represents Warnings.
What I'm trying to accomplish is a method or that if this fails runs that and moves the error to the warning type.
Here is a simplified example of what I'm doing.
sealed trait Validator[-I, +E, +W, +A] extends Product with Serializable
this type has several cases, which aren't really important here, so instead I'll go over an example usage:
case class MyObj(coords: GeoCoords)
case class GeoCoords(lat: String, long: String)
// Getters
val getLatitude: Validator[GeoCoords, Nothing, Nothing, String] = from[GeoCoords].map(_.lat)
val getLongitude: Validator[GeoCoords, Nothing, Nothing, String] = from[GeoCoords].map(_.long)
val parseLatitude: Validator[GeoCoords, Exception, Nothing, Double] = getLatitude andThen nonEmptyString andThen convertToDouble
val parseLongitude: Validator[GeoCoords, Exception, Nothing, Double] = getLongitude andThen convertToDouble
Now this is a bad example, but what I'm looking to do is that because parseLatitude has an error type of Exception, perhaps I want to give a default instead, but still understand that it failed. I'd like to move the Exception from the E error param to the W warning param like this:
val defaultLatitude: Validator[GeoCoords, Nothing, Nothing, Double] = success(0)
val finalLatitude: Validator[GeoCoords, Nothing, Exception, Double] = parseLatitude or defaultLatitude
But as well, if instead of supplying default, the other action I take after the or may fail as well, therefore this should also be the case:
val otherAction: Validator[GeoCoords, Throwable, Nothing, Double] = ???
val finalLatitude: Validator[GeoCoords, Throwable, Exception, Double] = parseLatitude or otherAction
I've tried implementing or in several ways on the Validator type but everytime it gives me an issue, basically casting things all the way up to Any.
def or[I2 <: I, E2 >: E, W2 >: W, B >: A](that: Validator[I2, E2, W2, B]): Validator[I2, E2, W2, B] = Validator.conversion { (i: I2) =>
val aVal: Validator[Any, E, W, A] = this.run(i)
val bVal: Validator[Any, E2, W2, B] = that.run(i)
val a: Vector[W2] = aVal.warnings ++ bVal.warnings
// PROBLEM HERE
val b: Vector[Any] = a ++ aVal.errors
Result(
aVal.warnings ++ aVal.errors ++ bVal.warnings,
bVal.value.toRight(bVal.errors)
)
}
I need to be able to say that W2 is both a supertype of W and of E so that I can concatenate the Vectors together and get type W2 at the end.
A super simplified self contained example is:
case class Example[+A, +B](a: List[A], b: List[B]) {
def or[A2 >: A, B2 >: B](that: Example[A2, B2]): Example[A2, Any] = {
Example(that.a, this.a ++ this.b ++ that.a)
}
}
object stackoverflow extends App {
val example1 = Example(List(1, 2), List(3, 4))
val example2 = Example(List(5, 6), List(7, 8))
val example3 = example1 or example2
}
Where I want the output type of or to be Example[A2, B2] instead of Example[A2, Any]
Actually you want the concatenation of a List[A] and a List[B] to produce a List[A | B], where A | B is union type.
How to define "type disjunction" (union types)?
In Scala 2 union types are absent but we can emulate them with type classes.
So regarding "super simplified example" try a type class LUB (least upper bound)
case class Example[A, B](a: List[A], b: List[B]) {
def or[A2 >: A, B2, AB](that: Example[A2, B2])(
implicit
lub: LUB.Aux[A, B, AB],
lub1: LUB[AB, A2]
): Example[A2, lub1.Out] = {
Example(that.a, (this.a.map(lub.coerce1) ++ this.b.map(lub.coerce2)).map(lub1.coerce1(_)) ++ that.a.map(lub1.coerce2(_)))
}
}
val example1: Example[Int, Int] = Example(List(1, 2), List(3, 4))
val example2: Example[Int, Int] = Example(List(5, 6), List(7, 8))
val example3 = example1 or example2
// example3: Example[Int, Any] // doesn't compile
example3: Example[Int, Int] // compiles
trait LUB[A, B] {
type Out
def coerce1(a: A): Out
def coerce2(b: B): Out
}
trait LowPriorityLUB {
type Aux[A, B, Out0] = LUB[A, B] { type Out = Out0 }
def instance[A, B, Out0](f: (A => Out0, B => Out0)): Aux[A, B, Out0] = new LUB[A, B] {
override type Out = Out0
override def coerce1(a: A): Out0 = f._1(a)
override def coerce2(b: B): Out0 = f._2(b)
}
implicit def bSubtypeA[A, B <: A]: Aux[A, B, A] = instance(identity, identity)
}
object LUB extends LowPriorityLUB {
implicit def aSubtypeB[A <: B, B]: Aux[A, B, B] = instance(identity, identity)
implicit def default[A, B](implicit ev: A <:!< B, ev1: B <:!< A): Aux[A, B, Any] =
instance(identity, identity)
}
// Testing:
implicitly[LUB.Aux[Int, AnyVal, AnyVal]]
implicitly[LUB.Aux[AnyVal, Int, AnyVal]]
implicitly[LUB.Aux[Int, String, Any]]
implicitly[LUB.Aux[Int, Int, Int]]
// implicitly[LUB.Aux[Int, AnyVal, Any]] // doesn't compile
<:!< is from here:
Scala: Enforcing A is not a subtype of B
https://github.com/milessabin/shapeless/blob/master/core/src/main/scala/shapeless/package.scala#L48-L52
If you want Example to be covariant
case class Example[+A, +B]...
make LUB and LUB.Aux contravariant
trait LUB[-A, -B]...
type Aux[-A, -B, Out0] = LUB[A, B] { type Out = Out0 }

Scala: abstracting over a path-dependent type in impilicit parameter

Let's say I have a class:
abstract class NumericCombine[A:Numeric,B:Numeric]{
type AB <: AnyVal
}
I want to define a function that returns a value of type NumericCombine[A,B].AB. for instance:
def plus[A: Numeric,B:Numeric](x: A, y: B): NumericCombine[A,B].AB
but the compiler doesn't let me reference .AB in plus.
FYI, this is the context of this question.
I want to provide:
implicit object IntFloat extends NumericCombine[Int,Float]{override type AB = Float}
implicit object FloatInt extends NumericCombine[Float,Int]{override type AB = Float}
and its other 44 friends (7*6-2) so that I can define my plus as below:
def plus[A: Numeric,B:Numeric](x: A, y: B): NumericCombine[A,B].AB =
{
type AB = Numeric[NumericCombine[A,B].AB]
implicitly[AB].plus(x.asInstanceOf[AB],y.asInstanceOf[AB])
}
plus(1f,2)//=3f
plus(1,2f)//=3f
I am aware of the fact that value conversions in Scala allows me to define
def plus[T](a: T, b: T)(implicit ev:Numeric[T]): T = ev.plus(a,b)
and achieve the behaviour above as suggested here, but since I want to use this function as part of a bigger function (which is described in the link mentioned as the context of this question), I need to parametrize the function with both A and B.
Update:
I made some good progress with this.
My NumericCombine now looks like this:
abstract class NumericCombine[A: Numeric, B: Numeric] {
type AB <: AnyVal
def fromA(x: A): AB
def fromB(y: B): AB
val numeric: Numeric[AB]
def plus(x: A, y: B): AB = numeric.plus(fromA(x), fromB(y))
def minus(x: A, y: B): AB = numeric.minus(fromA(x), fromB(y))
def times(x: A, y: B): AB = numeric.times(fromA(x), fromB(y))
}
and My plus function looks like:
def plus[A: Numeric, B: Numeric](x: A, y: B)(implicit ev:NumericCombine[A,B])
: ev.AB = ev.plus(x, y)
The weighted average function requiring plus ended up becoming a bit more complicated:
def accumulateWeightedValue[A: Numeric,B: Numeric]
(accum: (A, NumericCombine[A, B]#AB), ValueWithWeight: (A, B))
(implicit combine: NumericCombine[A, B], timesNumeric: Numeric[NumericCombine[A, B]#AB])
:(A,NumericCombine[A, B]#AB)=
this is a function that takes (A,AB),(A,B) and returns (A,AB). I use it internally inside weightedSum which just aggregates over this:
def weightedSum[A: Numeric,B: Numeric](weightedValues: GenTraversable[(A, B)])
(implicit numericCombine: NumericCombine[A, B], plusNumeric: Numeric[NumericCombine[A, B]#AB])
: (A, NumericCombine[A, B]#AB)
Now, this compiles fine. It does seem to have a problem with the second implicit parameter. ie Numeric[AB] when I run it with implicit values for say NumericCombine[Int,Float] present. It gives me:
could not find implicit value for parameter plusNumeric:
Numeric[NumericCombine[Int,Float]#AB]
note that in NumericCombine, I have a Numeric[AB] which should be available for implicit look-up. storing it locally, in the case of [Int,Float]:
val lst: Seq[(Int, Float)] =List((1,3f),(1,4f))
implicit val num: Numeric[Float] = IntFloat.numeric //IntFloat extends NumericCombine[Int,Float]
weightedSum(lst)
in a local variable before invoking the function needing it doesn't seem to have any impact. So why is it being picked up by the implicit system.
Just use
def plus[A: Numeric,B:Numeric](x: A, y: B): NumericCombine[A,B]#AB
Note the # (hash) instead of . (dot). This is called "type projection". Dot notation is called "path dependent type". I'm telling you these names so that you can google for more info easily. Simply put, # is used for accessing types from classes/traits, and . is used for accessing types from objects/values.
Example:
trait Foo {
type T
}
val fooObj: Foo = new Foo {
type T = Int
}
type t1 = fooObj.T
type t2 = Foo#T
* 18 Apr 2017: updated base on the latest code from author *
* 19 Apr 2017 *
Add NumericCombine#Implicits for convinence
Remove AnyVal constraints to support any Numeric types e.g. BigInt
Refactor NumericCombine
You need Aux pattern:
import scala.collection.GenSeq
trait NumericCombine[A, B] {
type AB
def fromA(x: A): AB
def fromB(y: B): AB
val numericA: Numeric[A]
val numericB: Numeric[B]
val numericAB: Numeric[AB]
// For convenience, caller can 'import combine.Implicits._'
// to bring the Numeric's into the current scope
object Implicits {
implicit def implicitNumericA = numericA
implicit def implicitNumericB = numericB
implicit def implicitNumericAB = numericAB
}
def plus(x: A, y: B): AB = numericAB.plus(fromA(x), fromB(y))
def minus(x: A, y: B): AB = numericAB.minus(fromA(x), fromB(y))
def times(x: A, y: B): AB = numericAB.times(fromA(x), fromB(y))
}
object NumericCombine {
type Aux[A, B, _AB] = NumericCombine[A, B] {
type AB = _AB
}
private def combine[A, B, _AB](fa: A => _AB, fb: B => _AB)
(implicit
_numericA: Numeric[A],
_numericB: Numeric[B],
_numericAB: Numeric[_AB]
): NumericCombine[A, B] = new NumericCombine[A, B] {
override type AB = _AB
override def fromA(x: A): AB = fa(x)
override def fromB(y: B): AB = fb(y)
override val numericA: Numeric[A] = _numericA
override val numericB: Numeric[B] = _numericB
override val numericAB: Numeric[AB] = _numericAB
}
implicit lazy val IntFloat = combine[Int, Float, Float](_.toFloat, identity)
implicit lazy val BigIntBigDecimal = combine[BigInt, BigDecimal, BigDecimal](i => BigDecimal(i), identity)
}
implicit class ValuesWithWeight[A, B](val weightedValue: (A, B)) {
def weight: A = weightedValue._1
def value: B = weightedValue._2
}
def weightedSum[A, B, AB]
(valuesWithWeight: GenSeq[(A, B)])
(implicit combine: NumericCombine.Aux[A, B, AB]):
(A, AB) = {
import combine.Implicits._
val z: (A, AB) =
(combine.numericA.zero, combine.numericAB.zero)
def accumulateWeightedValue(accum: (A, AB), valueWithWeight: (A, B)): (A, AB) = {
val weightedValue = combine.times(valueWithWeight.weight, valueWithWeight.value)
(
combine.numericA.plus(accum.weight, valueWithWeight.weight),
combine.numericAB.plus(accum.value, weightedValue)
)
}
valuesWithWeight.aggregate(z)(
accumulateWeightedValue,
// dataOps.tuple2.plus[A,AB]
{
case ((a1, ab1), (a2, ab2)) =>
(combine.numericA.plus(a1, a2) ->
combine.numericAB.plus(ab1, ab2))
}
)
}
weightedSum(Seq(1 -> 1.5f, 2 -> 1f, 3 -> 1.7f))
weightedSum(Seq(BigInt(1) -> BigDecimal("1.5"), BigInt(2) -> BigDecimal("1"), BigInt(3) -> BigDecimal("1.7")))
An alternative to #slouc's answer is
def plus[A, B](x: A, y: B)(implicit ev: NumericCombine[A, B]): ev.AB
I'd also enhance NumericCombine:
trait NumericCombine[A, B] {
type AB <: AnyVal
def fromA(a: A): AB
def fromB(b: B): AB
val num: Numeric[AB]
}
abstract class NumericCombineImpl[A, B, R](implicit val num: Numeric[R], f1: A => R, f2: B => R) {
type AB = R
def fromA(a: A) = f1(a)
def fromB(b: B) = f2(b)
}
implicit object IntFloat extends NumericCombineImpl[Int,Float,Float]
...
This would allow to actually implement plus, no casts required:
def plus[A, B](x: A, y: B)(implicit ev: NumericCombine[A, B]): ev.AB =
ev.num.plus(ev.fromA(x), ev.fromB(y))

Lifting a function which takes implicit parameter using functor (Scalaz7)

Just started learning Scalaz. Here is my code
trait Monoid[A] {
def mappend(a1: A, a2: A): A
def mzero: A
}
object Monoid {
implicit val IntMonoid: Monoid[Int] = new Monoid[Int] {
def mappend(a1: Int, a2: Int): Int = a1 + a2
def mzero: Int = 0
}
implicit val StringMonoid: Monoid[String] = new Monoid[String] {
def mappend(a1: String, a2: String): String = a1 + a2
def mzero: String = ""
}
}
trait MonoidOp[A] {
val F: Monoid[A]
val value: A
def |+|(a2: A): A = F.mappend(value, a2)
}
object MonoidOp{
implicit def toMonoidOp[A: Monoid](a: A): MonoidOp[A] = new MonoidOp[A]{
val F = implicitly[Monoid[A]]
val value = a
}
}
I have defined a function (just for the sake of it)
def addXY[A: Monoid](x: A, y: A): A = x |+| y
I want to lift it so that it could be used using Containers like Option, List, etc. But when I do this
def addXYOptioned = Functor[Option].lift(addXY)
It says error: could not find implicit value for evidence parameter of type scalaz.Monoid[A]
def addOptioned = Functor[Option].lift(addXY)
How to lift such functions?
Your method addXY needs a Monoid[A] but there is no Monoid[A] in scope when used in addXYOptioned, so you also need to add the Monoid constraint to addXYOptioned.
The next problem is that Functor.lift only lifts a function A => B, but we can use Apply.lift2 to lift a function (A, B) => C.
Using the Monoid from Scalaz itself :
import scalaz._, Scalaz._
def addXY[A: Monoid](x: A, y: A): A = x |+| y
def addXYOptioned[A: Monoid] = Apply[Option].lift2(addXY[A] _)
We could generalize addXYOptioned to make it possible to lift addXY into any type constructor with an Apply instance :
def addXYApply[F[_]: Apply, A: Monoid] = Apply[F].lift2(addXY[A] _)
addXYApply[List, Int].apply(List(1,2), List(3,4))
// List[Int] = List(4, 5, 5, 6)
addXYApply[Option, Int].apply(1.some, 2.some)
// Option[Int] = Some(3)

Trouble with inferred types when using Shapeless

I'm having a bit of trouble getting the inferred types of some extension methods that use Shapeless to line up with what (I think that) they should be. I can assign the result of my expressions to a val with an explicit type after passing them through identity or by way of a val without an explicit type (aaa and bb below respectively), but not directly (c below).
Tested using Scala 2.10.3, Shapeless 1.2.4, Scalaz 7.0.6.
import shapeless._, Tuples._
import scalaz._, Scalaz._
trait FnOps[=>:[_, _], A, B] {
val F: Arrow[=>:]
val f: A =>: B
def &&&:[C](g: A =>: C): A =>: (C, B) =
F.combine(g, f)
}
trait FnProdOps[=>:[_, _], A, B <: Product] {
val F: Arrow[=>:]
val f: A =>: B
def &&&:[C, R <: HList](g: A =>: C)(implicit hlister: HListerAux[B, R], tupler: Tupler[C :: R]): A =>: tupler.Out =
F.mapsnd(F.combine(g, f)) {
case (c, b) => tupler(c +: hlister(b))
}
}
trait LowPriorityImplicits0 {
implicit def ToFnOps[=>:[_, _], A, B](fn: A =>: B)(implicit A: Arrow[=>:]): FnOps[=>:, A, B] =
new FnOps[=>:, A, B] {
val F = A
val f = fn
}
}
object Implicits extends LowPriorityImplicits0 {
implicit def ToFnProdOps[=>:[_, _], A, B <: Product](fn: A =>: B)(implicit A: Arrow[=>:]): FnProdOps[=>:, A, B] =
new FnProdOps[=>:, A, B] {
val F = A
val f = fn
}
}
import Implicits._
// These work
val a: Int => Int = _ * 2
val aa: Int => (Int, Int) = a &&&: a
val aaa: Int => (Int, Int, Int) = identity(a &&&: a &&&: a)
// This works too
val b = a &&&: a &&&: a
val bb: Int => (Int, Int, Int) = b
// This doesn't
val c: Int => (Int, Int, Int) = a &&&: a &&&: a
Is there a way to make assignments similar to c compile?

Path Dependency in Scala

trait B {
type MyInnerType
def foo: MyInnerType
}
object B1 extends B {
type MyInnerType = Double
val foo = 3.0
}
trait A {
type MyInnerType
val b: B
def foo(x: b.MyInnerType): MyInnerType
def bar(y: MyInnerType): Unit
}
object A1 extends A {
type MyInnerType = Int
val b = B1
def foo(x: b.MyInnerType) = 1
def bar(y: MyInnerType) {}
}
object A2 extends A {
type MyInnerType = String
val b = B1
def foo(x: b.MyInnerType) = "a"
def bar(y: MyInnerType) {}
}
val as = Seq(A1, A2)
as foreach { a => a.bar(a.foo(a.b.foo)) } // wrong, a.foo(a.b.foo) infers to Any
However, if a.foo does not take parameters, everything works perfectly and a.foo infers to a.MyInnerType. It also works if I cast .asInstanceOf[a.MyInnerType]. Any explanations?
I'm running scala 2.9.1 and on the REPL I get this for as:
scala> val as = Seq(A1, A2)
as: Seq[ScalaObject with A{def foo(x: Double): Any; val b: B1.type; type MyInnerType >: java.lang.String with Int}] = List(A1$#6da13047, A2$#7168bd8b)
However, when I change it to val as:Seq[A] = Seq(A1, A2) I get:
scala> val as:Seq[A] = Seq(A1, A2)
as: Seq[A] = List(A1$#6da13047, A2$#7168bd8b)
scala> as foreach { a => a.bar(a.foo(a.b.foo)) }
Sometimes (all the time) scala has trouble inferring types, so you have to annotate what you want. I go to the REPL often to find out what's really going on.