I am using RedGate SQL Compare 11.6 to compare two SQLServer 2016 databases.
The problem is, the comparison result includes tables that have same columns but in different order. I would like to exclude this. Is there a way to do these?
RedGate's Support forum and help documents say that 'Default behavior is to ignore such differences' But it doesn't seem to work like that.
By default it doesn't compare column order. To validate this, I set up a test this way using SQL Server 2016 & Compare 11.6:
USE Test;
GO
CREATE TABLE dbo.Order1 (
ID INT,
NotID TINYINT,
SomeValue VARCHAR(50)
);
GO
USE Test2;
GO
CREATE TABLE dbo.Order1 (
SomeValue VARCHAR(50),
ID INT,
NotID TINYINT
);
GO
When I ran compare against the two tables, the output was here:
If you note at the top, it says there are 24 identical objects. These two tables count as identical. However, compare does note that the column order is different. There's an option you can set "Force Column Order" that changes this behavior. When that's enabled you would see this from the comparison:
It's possible that's what you're seeing. Check the options on the Compare project.
Related
I have to produce a dynamically generated T-SQL script that inserts records into various tables. I've done a bunch of searching and testing but can't seem to find the path I'm looking for.
I know that the following is valid SQL:
INSERT INTO [MyTable] ( [Col1], [Col2], [Col3] )
SELECT N'Val1', N'Val2', N'Val3';
But, is it at all possible to write something akin to this:
INSERT INTO [MyTable]
SELECT [Col1] = N'Val1', [Col2] = N'Val2', [Col3] = N'Val3';
By having the columns in the select statement, I'm able to do it all at once vs writing 2 separate lines. Obviously my idea doesn't work, I'm trying to figure out whether something similar is possible or I need to stick with the first one.
Much appreciated.
Best practice for insert statements is to specify the columns list in the insert clause, and for very good reasons:
It's far more readable. You know exactly what value goes into what column.
You don't have to provide values to nullable \ default valued columns.
You're not bound to the order of the columns in the table.
In case a column is added to the table, your insert statement might not break (It will if the newly added column is not nullable and doesn't have a default value).
In some cases, SQL Server demands you specify the columns list explicitly, like when identity_insert is set to on.
And in any case, the column names or aliases in the select clause of the insert...select statement does not have any effect as to what target columns the value column should go to. values are directed to target based only on their location in the statement.
Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);
Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);
In a stored procedure (using SQL Server 2008 R2 SP2) is it possible to return a NewSequentialID() without a temp table variable?
I can successfully obtain the NewSequentialID() by using a temp table:
Getting Value of NEWSEQUENTIALID() on Insert
Perhaps I’m old school, but I try to refrain from using temp tables unless absolutely necessary… though this might be a case where it is absolutely necessary…
IF I try:
DECLARE #NewSequentialID UNIQUEIDENTIFIER;
SET #NewSequentialID = NEWID()
… it works as expected.
IF I try:
DECLARE #NewSequentialID UNIQUEIDENTIFIER;
SET #NewSequentialID = NEWSEQUENTIALID()
… I receive the following error:
The newsequentialid() built-in function can only be used in a DEFAULT
expression for a column of type ‘uniqueidentifier’ in a CREATE TABLE
or ALTER TABLE statement. It cannot be combined with other operators
to form a complex scalar expression.
Is the ONLY solution to use a temp table method?
Does anyone know of a reason why Microsoft implemented a difference between NEWSEQUENTIALID() to work like NEWID()?
Anyone know if there's a chance Microsoft will update NEWSEQUENTIALID() to work like NEWID()?
Geo
UPDATE --
I'm not sure why Microsoft choose to implement the method in this manner, since they state that, "NEWSEQUENTIALID is a wrapper over the Windows UuidCreateSequential function"... but it appears that there is no non-temp-variable table method. (At least as of yet.)Thanks for everyone's comments / answers. [Moderator Note:] I'm not sure what to do with a question when the answer is "not possible". So I'm going to give #marc_s credit for detailing a workaround.
For now - newsequentialid() can only be used as a default constraint on a column. That's what the error message pretty clearly says, too.
So in order to get your sequential GUID's - you must have a table. No other way to do this. And no other way in SQL Server 2012, either.
I have no idea nor any information as to why there's such a difference, and why Microsoft chose to implement it this way....
Update:
OK, so you need to get that value that is being inserted into your table - how about using the OUTPUT clause?
Something like:
DECLARE #NewIDs TABLE (NewSeqID UNIQUEIDENTIFIER)
INSERT INTO dbo.YourTable(list-of-columns)
OUTPUT INSERTED.NewSeqID INTO #NewIDs(NewSeqID)
VALUES (.........)
This way, the output from the INSERT operation - the newly created sequential GUIDs - is being stored into that table variable, and you can use that, return it, slice it - whatever you like!
the official Microsoft saying is:
NEWSEQUENTIALID() can only be used with DEFAULT constraints on table
columns of type uniqueidentifier. For example: CREATE TABLE myTable
(ColumnA uniqueidentifier DEFAULT NEWSEQUENTIALID())
described here
http://msdn.microsoft.com/en-us/library/ms189786.aspx
NewID generates a random number and the other is the next sequential number.
We have an Oracle application that uses a standard pattern to populate surrogate keys. We have a series of extrinsic rows (that have specific values for the surrogate keys) and other rows that have intrinsic values.
We use the following Oracle trigger snippet to determine what to do with the Surrogate key on insert:
IF :NEW.SurrogateKey IS NULL THEN
SELECT SurrogateKey_SEQ.NEXTVAL INTO :NEW.SurrogateKey FROM DUAL;
END IF;
If the supplied surrogate key is null then get a value from the nominated sequence, else pass the supplied surrogate key through to the row.
I can't seem to find an easy way to do this is T-SQL. There are all sorts of approaches, but none of which use the notion of a sequence generator like Oracle and other SQL-92 compliant DBs do.
Anybody know of a really efficient way to do this in SQL Server T-SQL? By the way, we're using SQL Server 2008 if that's any help.
You may want to look at IDENTITY. This gives you a column for which the value will be determined when you insert the row.
This may mean that you have to insert the row, and determine the value afterwards, using SCOPE_IDENTITY().
There is also an article on simulating Oracle Sequences in SQL Server here: http://www.sqlmag.com/Articles/ArticleID/46900/46900.html?Ad=1
Identity is one approach, although it will generate unique identifiers at a per table level.
Another approach is to use unique identifiers, in particualr using NewSequantialID() that ensues the generated id is always bigger than the last. The problem with this approach is you are no longer dealing with integers.
The closest way to emulate the oracle method is to have a separate table with a counter field, and then write a user defined function that queries this field, increments it, and returns the value.
Here is a way to do it using a table to store your last sequence number. The stored proc is very simple, most of the stuff in there is because I'm lazy and don't like surprises should I forget something so...here it is:
----- Create the sequence value table.
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[SequenceTbl]
(
[CurrentValue] [bigint]
) ON [PRIMARY]
GO
-----------------Create the stored procedure
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE procedure [dbo].[sp_NextInSequence](#SkipCount BigInt = 1)
AS
BEGIN
BEGIN TRANSACTION
DECLARE #NextInSequence BigInt;
IF NOT EXISTS
(
SELECT
CurrentValue
FROM
SequenceTbl
)
INSERT INTO SequenceTbl (CurrentValue) VALUES (0);
SELECT TOP 1
#NextInSequence = ISNULL(CurrentValue, 0) + 1
FROM
SequenceTbl WITH (HoldLock);
UPDATE SequenceTbl WITH (UPDLOCK)
SET CurrentValue = #NextInSequence + (#SkipCount - 1);
COMMIT TRANSACTION
RETURN #NextInSequence
END;
GO
--------Use the stored procedure in Sql Manager to retrive a test value.
declare #NextInSequence BigInt
exec #NextInSequence = sp_NextInSequence;
--exec #NextInSequence = sp_NextInSequence <skipcount>;
select NextInSequence = #NextInSequence;
-----Show the current table value.
select * from SequenceTbl;
The astute will notice that there is a parameter (optional) for the stored proc. This is to allow the caller to reserve a block of ID's in the instance that the caller has more than one record that needs a unique id - using the SkipCount, the caller need make only a single call for however many IDs are needed.
The entire "IF EXISTS...INSERT INTO..." block can be removed if you remember to insert a record when the table is created. If you also remember to insert that record with a value (your seed value - a number which will never be used as an ID), you can also remove the ISNULL(...) portion of the select and just use CurrentValue + 1.
Now, before anyone makes a comment, please note that I am a software engineer, not a dba! So, any constructive criticism concerning the use of "Top 1", "With (HoldLock)" and "With (UPDLock)" is welcome. I don't know how well this will scale but this works OK for me so far...