Non-'#objc' method does not satisfy optional requirement of '#objc' protocol - swift

Overview:
I have a protocol P1 which provides a default implementation of one of the Objective-C optional functions.
When I provide a default implementation of the optional function there is a warning
Compiler Warning:
Non-'#objc' method 'presentationController(_:viewControllerForAdaptivePresentationStyle:)' does not satisfy optional requirement of '#objc' protocol 'UIAdaptivePresentationControllerDelegate'
Version:
Swift: 3
Xcode: 8 (public release)
Attempts made:
Tried adding #objc but doesn't help
Question:
How do I resolved this ?
Is there a work around ?
Code:
#objc protocol P1 : UIAdaptivePresentationControllerDelegate {
}
extension P1 where Self : UIViewController {
func presentationController(_ controller: UIPresentationController, viewControllerForAdaptivePresentationStyle style: UIModalPresentationStyle) -> UIViewController? {
return UIViewController()
}
}
class A : UIViewController, P1 {
}

While I think I can answer your question, it's not an answer you will like.
TL;DR: #objc functions may not currently be in protocol extensions. You could create a base class instead, though that's not an ideal solution.
Protocol Extensions and Objective-C
First, this question/answer (Can Swift Method Defined on Extensions on Protocols Accessed in Objective-c) seems to suggest that because of the way protocol extensions are dispatched under the hood, methods declared in protocol extensions are not visible to the objc_msgSend() function, and therefore are not visible to Objective-C code. Since the method you are trying to define in your extension needs to be visible to Objective-C (so UIKit can use it), it yells at you for not including #objc, but once you do include it, it yells at you because #objc is not allowed in protocol extensions. This is probably because protocol extensions are not currently able to be visible to Objective-C.
We can also see that the error message once we add #objc states "#objc can only be used with members of classes, #objc protocols, and concrete extensions of classes." This is not a class; an extension to an #objc protocol is not the same as being in the protocol definition itself (i.e. in requirements), and the word "concrete" would suggest that a protocol extension does not count as a concrete class extension.
Workaround
Unfortunately, this pretty much completely prevents you from using protocol extensions when the default implementations must be visible to Objective-C frameworks. At first, I thought perhaps #objc was not allowed in your protocol extension because the Swift Compiler could not guarantee that conforming types would be classes (even though you have specifically specified UIViewController). So I put a class requirement on P1. This did not work.
Perhaps the only workaround is to simply use a base class instead of a protocol here, but this is obviously not completely ideal because a class may only have a single base class but conform to multiple protocols.
If you choose to go this route, please take this question (Swift 3 ObjC Optional Protocol Method Not Called in Subclass) into account. It appears that another current issue in Swift 3 is that subclasses do not automatically inherit the optional protocol requirement implementations of their superclass. The answer to that questions uses a special adaption of #objc to get around it.
Reporting the Issue
I think this is being discussed already among those working on the Swift open source projects, but you could be sure they are aware by either using Apple's Bug Reporter, which would likely eventually make its way to the Swift Core Team, or Swift's bug reporter. Either of these may find your bug too broad or already known, however. The Swift team may also consider what you are looking for to be a new language feature, in which case you should first check out the mailing lists.
Update
In December 2016, this issue was reported to the Swift community. The issue is still marked as open with a medium priority, but the following comment was added:
This is intended. There is no way to add the implementation of the method to every adopter, since the extension could be added after the conformance to the protocol. I suppose we could allow it if the extension is in the same module as the protocol, though.
Since your protocol is in the same module as your extension, however, you may be able to do this in a future version of Swift.
Update 2
In February 2017, this issue was officially closed as "Won't Do" by one of the Swift Core Team members with the following message:
This is intentional: protocol extensions cannot introduce #objc entry points due to limitations of the Objective-C runtime. If you want to add #objc entry points to NSObject, extend NSObject.
Extending NSObject or even UIViewController will not accomplish exactly what you want, but it unfortunately does not look like it will become possible.
In the (very) long-term future, we may be able to eliminate reliance on #objc methods entirely, but that time will likely not come anytime soon since Cocoa frameworks are not currently written in Swift (and cannot be until it has a stable ABI).
Update 3
As of Fall 2019, this is becoming less of a problem because more and more Apple frameworks are being written in Swift. For example, if you use SwiftUI instead of UIKit, you sidestep the problem entirely because #objc would never be necessary when referring to a SwiftUI method.
Apple frameworks written in Swift include:
SwiftUI
RealityKit
Combine
CryptoKit
One would expect this pattern to continue over time now that Swift is officially ABI and module stable as of Swift 5.0 and 5.1, respectively.

I just ran into this after enabling 'module stability' (turning on 'Build libraries for distribution') in a swift framework I use.
What I had was something like this:
class AwesomeClass: LessAwesomeClass {
...
}
extension AwesomeClass: GreatDelegate {
func niceDelegateFunc() {
}
}
The function in the extension had these errors:
'#objc' instance method in extension of subclass of 'LessAwesomeClass' requires iOS 13.0.0
Non-'#objc' method 'niceDelegateFunc' does not satisfy requirement of '#objc' protocol 'GreatDelegate'
Moving the functions into the class rather than in an extension resolved the issue.

Here's another workaround. I ran into this issue as well, and cannot switch from UIKit to SwiftUI yet. Moving the default implementations into a common base class was not an option for me either. My default implementations were quite extensive so I really did not want to have all that code duplicated. The workaround I ended up using was to use wrapper functions in the protocol, and then simply call those functions from each class. Not pretty, but may be better than the alternative, depending on the situation. Your code would then look something like this:
#objc protocol P1 : UIAdaptivePresentationControllerDelegate {
}
extension P1 where Self : UIViewController {
func wrapPresentationController(_ controller: UIPresentationController, viewControllerForAdaptivePresentationStyle style: UIModalPresentationStyle) -> UIViewController? {
return UIViewController()
}
}
class A : UIViewController, P1 {
func presentationController(_ controller: UIPresentationController, viewControllerForAdaptivePresentationStyle style: UIModalPresentationStyle) -> UIViewController? {
return wrapPresentationController(controller, viewControllerForAdaptivePresentationStyle: style)
}
}

Related

Why would we use extensions?

I've just learned about extensions and I was wondering, there was an example about extending a protocol. For example, let's say we have the protocol:
protocol CanFly {
func canFly()
}
which allows all the classes who can fly to basiclly to fly. Now lets say that we use extension to extend the protocol, and we do:
extension CanFly {
func canEat() {
print("I can eat")
}
}
What is the purpose of that if we can just add that func canEat to our protocol? More of those protocols are like an abstract struct so why would we add a func with a body to it?
just wanna say if I've made a mess im sorry for that lol, just want to clear out few things about extension <3
Per Swift documentation on Protocol Extensions:
Protocols can be extended to provide method, initializer, subscript,
and computed property implementations to conforming types. This allows
you to define behavior on protocols themselves, rather than in each
type’s individual conformance or in a global function.
This means you can run logic within the protocol extension function so you don't have to do it in each class that conforms to the protocol.
Personally, I also find extensions useful to extend the functionality of built-in classes like String or UIViewController since extensions can be called from anywhere in an app. I have some open-source extension snippets you can take a look at if you'd like.
Extending a protocol is just one of the possible use cases for extensions, really powerful and useful, but might be confusing at the start.
I suggest you looking through this article, as it dives deeper into more mundane, so to speak, ways to use it.

What's the mechanics behind extension's methods overriding with '#objc' attribute?

Kind of nerd question. It's unclear to me, what exactly makes this code works:
class Shape { }
extension Shape {
#objc func redraw() {
print("from ext")
}
}
class Circle: Shape { }
class Line: Shape {
override func redraw() { // Compiler error: Declarations from extensions cannot be overridden yet
print("from subclass")
}
}
let line = Line()
let shape:Shape = line
let circle = Circle()
line.redraw() //from subclass
circle.redraw() //from ext
shape.redraw() //from subclass
If I omit #objc keyword in extension, the code won't compile - it's expected behaviour since methods in extension use static method dispatch -> cannot be overridden.
But why adding #objc makes it work? According to documentation and most articles, all is #objc doing is making things visible to Objective-c runtime. To change method dispatch type there is a special keyword - dynamic. But seems it is not necessary here!
Help me figure out, why is adding #objc (and omitting dynamic) makes such things possible.
Extensions,
as the name already says, are supposed to extend/add/include methods
to an existing implementation, making them one of the most beautiful
things about Objective-C, and now Swift, since you can add code to a
class or framework you do not own. Therefore, it makes sense that
you’re not supposed to “replace” code in extensions, conceptually
speaking.
That’s why the compiler complains when you try to do it.
Also Check out this answer.
however this seems to be a support issue too, as swift compiler simply throw this error:
overriding non-#objc declarations from extensions is not supported.
According to Apple,
Extensions can add new functionality to a type, but they cannot
override existing functionality.
But that is not the case, as we are overriding from the extension not vice versa,
which takes us back to the declaration of extension.
Extensions add new functionality to an existing class, structure, enumeration, or protocol type. This includes the ability to extend types for which you do not have access to the original source code (known as retroactive modeling). Extensions are similar to categories in Objective-C. (Unlike Objective-C categories, Swift extensions do not have names.) Here.
Going back to the legacy topic swift compiler vs Objc compiler,
Dynamic dispatch vs. Static dispatch .
And there is no official documentation from apple on why this is not supported from the swift compiler or if they have any future plans to fix this or consider it an issue at all.
However, there’s no such thing as Swift dynamic dispatch; we only have
the Objective-C runtime’s dynamic dispatch. That means you can’t have
just dynamic and you must write #objc dynamic. So this is effectively
the same situation as before, just made explicit.
And here is a great article talking about this topic deeply.

Why must Protocol defaults be implemented via Extensions in Swift?

In Swift, you cannot define default implementations of functions or properties in the Protocol definition itself, i.e.:
protocol Container {
//These are fine
associatedtype Item
mutating func append(_ item: Item)
var count: Int { get set }
subscript(i: Int) -> Item { get }
//These are not fine
var defaultValue: Int = 10
mutating func messWithCount(){
self.count *= 10
}
}
extension Container {
//This is fine though
mutating func messWithCount(){
self.count *= 10
}
}
But you could do so via the Extensions (although Extensions do not support stored properties, they support functions and computed ones - although the stored property issue can be worked around).
What is the explanation behind this? As an add along, what is the explanation for optional func being only implementable if we mark both the Protocol and the func as #objc and hence rendering it unusable for Structs/Enums (which are Value not Reference based)?
EDIT: Added in Extension example
The #optional directive is an Objective-C only directive and has not been translated to Swift. This doesn't mean that you can't use it in Swift, but that you have to expose your Swift code to Objective-C first with he #objc attribute.
Note that exposing to Obj-C will only make the protocol available to types that are in both Swift and Obj-C, this excludes for example Structs as they are only available in Swift!
To answer your first question, Protocols are here to define and not implement:
A protocol defines a blueprint of methods, properties, and other requirements [...]
And the implementation should thus be supplied by the class/stuct/enum that conforms to it:
The protocol can then be adopted by a class, structure, or enumeration to provide an actual implementation of those requirements
This definition really applies to Protocols we use in our daily lives as well. Take for example the protocol to write a Paper:
The PaperProtocol defines a paper as a document with the following non-nil variables:
Introduction
Chapters
Conclusion
What the introduction, chapters and conclusion contain are up to the one implementing them (the writer) and not the protocol.
When we look at the definition of Extensions, we can see that they are here to add (implement) new functionalities:
Extensions add new functionality to an existing class, structure, enumeration, or protocol type. This includes the ability to extend types for which you do not have access to the original source code.
So extending a protocol (which is allowed) gives you the possibility to add new functionality and hereby give a default implementation of a defined method. Doing so will work as a Swift only alternative to the #optional directive discussed above.
UPDATE:
While giving a default implementation to a protocol function in Switch does make it "optional", it is fundamentally not the same as using the #optional directive in Objective-C.
In Objective-C, an optional method that is not implemented has no implementation at all so calling it would result in a crash as it does not exist. One would thus have to check if it exists before calling it, in opposition to Swift with an extension default where you can call it safely as a default implementation exists.
An optional in Obj-C would be used like this:
NSString *thisSegmentTitle;
// Verify that the optional method has been implemented
if ([self.dataSource respondsToSelector:#selector(titleForSegmentAtIndex:)]) {
// Call it
thisSegmentTitle = [self.dataSource titleForSegmentAtIndex:index];
} else {
// Do something as fallback
}
Where it's Swift counterpart with extension default would be:
let thisSegmentTitle = self.dataSource.titleForSegmentAtIndex(index)

Preventing protocol methods from showing up twice in autocomplete

This is more of an annoyance and cosmetic issue than anything else, but there are some consistency issues with autocomplete in Xcode, and I'd very much appreciate if somebody has a solution for it.
Consider a protocol MyProtocol, which has a property and a method:
public protocol MyProtocol {
var variable: String { get }
func method()
}
And a class A which adopts MyProtocol and implements the requirements in order to conform to the protocol:
public class A { ... }
extension A: MyProtocol {
public var variable: String { get { return "String from A." } }
public func method() {
print("Method called.")
}
}
The problem:
When accessing the members of an instance of A, protocol methods show up twice, whereas properties only show up once:
If everything is documented in code, it becomes clear that the protocol properties become hidden, while protocol methods remain visible in autocomplete. The same applies for default implementations of protocol methods - still visible.
Another thing that makes this issue even more peculiar is that if an instance of e.g. A is created in the same file where the class is declared, and that instance's members are accessed within the same file as well, then the protocol method disappears from autocomplete:
But, if the same instance (which is now on the global scope) is called from another file, the protocol method reappears in autocomplete.
So, my question is: does anybody know how to hide the duplicate protocol methods from autocomplete?
Versions:
Xcode: 7.3 (7D175)
Swift: 2.2
This seems to be a bug. rdar://21701167 was filed last year.
It could be caused by:
duplicates originating from Xcode document updates
duplicates from 3rd party Xcode document plugins
installing two versions of Xcode side-by-side
It's anyone's guess really. It is sort of annoying. Sometimes I get 3 or 4 duplicates. I am using two versions of Xcode and I was using a 3rd party document plugin.

Implementing both AVCaptureFileOutputDelegate and AVCaptureVideoDataOutputSampleBufferDelegate

I am creating a class that implements both the AVCaptureFileOutputDelegate and the AVCaptureVideoDataOutputSampleBufferDelegate protocols in Swift 2 (beta 3), but I am getting a compiler error due to the fact that both protocols define very similar functions (intentionally so; there are example Objective-C classes that implement both protocols).
The conflicting protocol extensions are AVCaptureFileOutputDelegate's captureOutput(_:didOutputSampleBuffer:fromConnection:) and AVCaptureVideoDataOutputSampleBufferDelegate's captureOutput(_:didOutputSampleBuffer:fromConnection:). The only difference in the function signatures is the type of the captureOutput argument (AVCaptureFileOutput and AVCaptureOutput respectively).
I thought that using AVCaptureFileOutput in my function definition might work, since it is a subclass of AVCaptureOutput, but the compiler still reports the error:
Objective-C method 'captureOutput:didOutputSampleBuffer:fromConnection:' provided by method 'captureOutput(_:didOutputSampleBuffer:fromConnection:)' conflicts with optional requirement method 'captureOutput(_:didOutputSampleBuffer:fromConnection:)' in protocol 'AVCaptureVideoDataOutputSampleBufferDelegate'
Is there a way to work around this, or to force the compiler to use the function for both protocols? Any idea if this is just a Swift 2.0 issue that should be reported, or an area where Swift has a different approach than what is normally used in Objective-C?
Thanks.
I was not able to find a workaround, at least given the current Swift beta. I instead used a separate class as the AVCaptureFileOutputDelegate delegate. Not elegant, but functional.