I'm running a Spark job (from a Spark notebook) using dynamic allocation with the options
"spark.master": "yarn-client",
"spark.shuffle.service.enabled": "true",
"spark.dynamicAllocation.enabled": "true",
"spark.dynamicAllocation.executorIdleTimeout": "30s",
"spark.dynamicAllocation.cachedExecutorIdleTimeout": "1h",
"spark.dynamicAllocation.minExecutors": "0",
"spark.dynamicAllocation.maxExecutors": "20",
"spark.executor.cores": 2
(Note: I'm not sure yet whether the issue is caused by dynamicAllocation or not)
I'm using Spark version 1.6.1.
If I cancel a running job/app (either by pressing the cancel-button on the cell in the notebook, or by shuting down the notebook server and thus the app) and restart the same app shortly (some minutes) after, I often get the following excpetion:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 2.0 failed 4 times, most recent failure: Lost task 1.3 in stage 2.0 (TID 38, i89810.sbb.ch): java.io.IOException: org.apache.spark.SparkException: Failed to get broadcast_3_piece0 of broadcast_3
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1222)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:165)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:64)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:88)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.spark.SparkException: Failed to get broadcast_3_piece0 of broadcast_3
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1$$anonfun$2.apply(TorrentBroadcast.scala:138)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:137)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:120)
at scala.collection.immutable.List.foreach(List.scala:318)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:120)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:175)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1219)
... 11 more
Using the Yarn ResourceManager, I verified that the old job is not running anymore before re-submitting the job. Still I suppose that the problem arises because the killed job is not yet fully cleaned up and interferes with the newly launched job?
Somebody has encountered the same issue and knows how to solve this?
You need to setup external shuffle service when dynamic allocation is enabled. Otherwise shuffle files are deleted when executors are removed. Which is why Failed to get broadcast_3_piece0 of broadcast_3 exception is thrown.
For more information on this, see official spark documentation Dynamic Resource Allocation
Related
I am getting below error while I tried to write an imported table from a azure container path to delta in databricks notebook,
Job aborted.
Caused by: Exception thrown in awaitResult:
Caused by: Job aborted due to stage failure.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:607)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:359)
at com.databricks.sql.transaction.tahoe.files.TransactionalWriteEdge.$anonfun$writeFiles$7(TransactionalWriteEdge.scala:352)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$5(SQLExecution.scala:189)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:336)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withCustomExecutionEnv$1(SQLExecution.scala:148)
Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult:
at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:428)
at com.databricks.sql.transaction.tahoe.perf.DeltaOptimizedWriterExec.awaitShuffleMapStage$1(DeltaOptimizedWriterExec.scala:189)
at com.databricks.sql.transaction.tahoe.perf.DeltaOptimizedWriterExec.getShuffleStats(DeltaOptimizedWriterExec.scala:194)
at com.databricks.sql.transaction.tahoe.perf.DeltaOptimizedWriterExec.computeBins(DeltaOptimizedWriterExec.scala:136)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 855 in stage 2.0 failed 4 times, most recent failure: Lost task 855.3 in stage 2.0 (TID 1527) (10.94.102.5 executor 19): ExecutorLostFailure (executor 19 exited caused by one of the running tasks) Reason: Remote RPC client disassociated. Likely due to containers exceeding thresholds, or network issues. Check driver logs for WARN messages.
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2979)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2926)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2920)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2920)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1340)
at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1340)
at scala.Option.foreach(Option.scala:407)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1340)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3188)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3129)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:3117)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
Below is the code,
%scala
spark.read.parquet(s"<Azure container path>")
.write.format("delta").mode("overwrite")
.option("delta.autoOptimize", "true")
.option("delta.autoOptimize.optimizeWrite", "true")
.option("delta.targetFileSize", "1024mb")
.option("delta.dataSkippingNumIndexedCols", "-1")
.option("path", s"<target_path>")
.partitionBy("week_id")
.saveAsTable(s"${table}")
I have tried by increasing driver and executor memory but still it had thrown the same error. Could someone please help on this issue?
When I am trying to write the data to Parquet file I am facing below mentioned error. I read post about if two Parquet files have different datatypes then we will see this error. But I tried individually casting all the columns in the dataframe also I am trying to write to a new directory that doesn't have any files.
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 787 in stage 76.0 failed 4 times, most recent failure: Lost task 787.3 in stage 76.0 (TID 77007) (100.100.191.241 executor 145): java.lang.UnsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary$PlainIntegerDictionary
at org.apache.parquet.column.Dictionary.decodeToBinary(Dictionary.java:41)
at org.apache.spark.sql.execution.datasources.parquet.ParquetDictionary.decodeToBinary(ParquetDictionary.java:51)
at org.apache.spark.sql.execution.vectorized.WritableColumnVector.getUTF8String(WritableColumnVector.java:400)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:755)
at org.apache.spark.sql.execution.columnar.DefaultCachedBatchSerializer$$anon$1.next(InMemoryRelation.scala:87)
at org.apache.spark.sql.execution.columnar.DefaultCachedBatchSerializer$$anon$1.next(InMemoryRelation.scala:79)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
I am executing a spark-scala job using spark-shell and the problem I am facing is, at the end of the final stage and final mapper like in stage 5 it allocates 50 and completed 49 very quickly and at the 50th it takes 5 minutes and says that out of memory and fails. I am using SPARK_MAJOR_VERSION=2
I am using the below command
spark-shell --master yarn --conf spark.driver.memory=30G --conf spark.executor.memory=40G --conf spark.shuffle.service.enabled=true --conf spark.dynamicAllocation.enabled=false --conf spark.sql.broadcastTimeout=36000 --conf spark.shuffle.compress=true --conf spark.executor.heartbeatInterval=3600s --conf spark.executor.instance=160
In the above configuration I have tried the dynamic allocation to true and started the driver and executor memory from 1GB. I have the overall ram of 6.78TB and 1300 VCores(This is my entire hadoop hardware).
The table I am reading is 40GB and I am joining 6 tables to that 40GB table, so, overall might be 60GB. so spark is initializing 4 stages for this and in the final stage at the end it is failing. I am using the spark sql to execute SQL.
Below are the errors:
19/04/26 14:29:02 WARN HeartbeatReceiver: Removing executor 2 with no recent heartbeats: 125967 ms exceeds timeout 120000 ms
19/04/26 14:29:02 ERROR YarnScheduler: Lost executor 2 on worker03.some.com: Executor heartbeat timed out after 125967 ms
19/04/26 14:29:02 WARN TaskSetManager: Lost task 5.0 in stage 2.0 (TID 119, worker03.some.com, executor 2): ExecutorLostFailure (executor 2 exited caused by one of the running tasks) Reason: Executor heartbeat timed out after 125967 ms
19/04/26 14:29:02 WARN HeartbeatReceiver: Removing executor 1 with no recent heartbeats: 126225 ms exceeds timeout 120000 ms
19/04/26 14:29:02 ERROR YarnScheduler: Lost executor 1 on ncednhpwrka0008.devhadoop.charter.com: Executor heartbeat timed out after 126225 ms
19/04/26 14:29:02 WARN YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_e1223_1556277056929_0976_01_000003 on host: worker03.some.com. Exit status: 52. Diagnostics: Exception from container-launch.
Container id: container_e1223_1556277056929_0976_01_000003
Exit code: 52
Shell output: main : command provided 1
main : run as user is svc-bd-xdladmrw-dev
main : requested yarn user is svc-bd-xdladmrw-dev
Getting exit code file...
Creating script paths...
Writing pid file...
Writing to tmp file /data/00/yarn/local/nmPrivate/application_1556277056929_0976/container_e1223_1556277056929_0976_01_000003/container_e1223_1556277056929_0976_01_000003.pid.tmp
Writing to cgroup task files...
Creating local dirs...
Launching container...
Getting exit code file...
Creating script paths...
Container exited with a non-zero exit code 52. Last 4096 bytes of stderr :
0 in stage 2.0 (TID 119)
19/04/26 14:27:37 INFO HadoopRDD: Input split: hdfs://datadev/data/dev/HIVE_SCHEMA/somedb.db/sbscr_usge_cycl_key_xref/000000_0_copy_2:0+6623042
19/04/26 14:27:37 INFO OrcRawRecordMerger: min key = null, max key = null
19/04/26 14:27:37 INFO ReaderImpl: Reading ORC rows from hdfs://datadev/data/dev/HIVE_SCHEMA/somedb.db/sbscr_usge_cycl_key_xref/000000_0_copy_2 with {include: [true, true, true], offset: 0, length: 9223372036854775807}
19/04/26 14:29:00 ERROR Executor: Exception in task 5.0 in stage 2.0 (TID 119)
java.lang.OutOfMemoryError
at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
at net.jpountz.lz4.LZ4BlockOutputStream.flushBufferedData(LZ4BlockOutputStream.java:205)
at net.jpountz.lz4.LZ4BlockOutputStream.write(LZ4BlockOutputStream.java:158)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.writeToStream(UnsafeRow.java:554)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:237)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/04/26 14:29:00 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker for task 119,5,main]
java.lang.OutOfMemoryError
at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
at net.jpountz.lz4.LZ4BlockOutputStream.flushBufferedData(LZ4BlockOutputStream.java:205)
at net.jpountz.lz4.LZ4BlockOutputStream.write(LZ4BlockOutputStream.java:158)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.writeToStream(UnsafeRow.java:554)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:237)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/04/26 14:29:00 INFO DiskBlockManager: Shutdown hook called
19/04/26 14:29:00 INFO ShutdownHookManager: Shutdown hook called
19/04/26 14:29:02 ERROR YarnScheduler: Lost executor 2 on worker03.some.com: Container marked as failed: container_e1223_1556277056929_0976_01_000003 on host: worker03.some.com. Exit status: 52. Diagnostics: Exception from container-launch.
Container id: container_e1223_1556277056929_0976_01_000003
Exit code: 52
Shell output: main : command provided 1
main : run as user is svc-bd-xdladmrw-dev
main : requested yarn user is svc-bd-xdladmrw-dev
Getting exit code file...
Creating script paths...
Writing pid file...
Writing to tmp file /data/00/yarn/local/nmPrivate/application_1556277056929_0976/container_e1223_1556277056929_0976_01_000003/container_e1223_1556277056929_0976_01_000003.pid.tmp
Writing to cgroup task files...
Creating local dirs...
Launching container...
Getting exit code file...
Creating script paths...
Container exited with a non-zero exit code 52. Last 4096 bytes of stderr :
0 in stage 2.0 (TID 119)
19/04/26 14:27:37 INFO HadoopRDD: Input split: hdfs://datadev/data/dev/HIVE_SCHEMA/somedb.db/sbscr_usge_cycl_key_xref/000000_0_copy_2:0+6623042
19/04/26 14:27:37 INFO OrcRawRecordMerger: min key = null, max key = null
19/04/26 14:27:37 INFO ReaderImpl: Reading ORC rows from hdfs://datadev/data/dev/HIVE_SCHEMA/somedb.db/sbscr_usge_cycl_key_xref/000000_0_copy_2 with {include: [true, true, true], offset: 0, length: 9223372036854775807}
19/04/26 14:29:00 ERROR Executor: Exception in task 5.0 in stage 2.0 (TID 119)
java.lang.OutOfMemoryError
at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
at net.jpountz.lz4.LZ4BlockOutputStream.flushBufferedData(LZ4BlockOutputStream.java:205)
at net.jpountz.lz4.LZ4BlockOutputStream.write(LZ4BlockOutputStream.java:158)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.writeToStream(UnsafeRow.java:554)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:237)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/04/26 14:29:00 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[Executor task launch worker for task 119,5,main]
java.lang.OutOfMemoryError
at java.io.ByteArrayOutputStream.hugeCapacity(ByteArrayOutputStream.java:123)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:117)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
at net.jpountz.lz4.LZ4BlockOutputStream.flushBufferedData(LZ4BlockOutputStream.java:205)
at net.jpountz.lz4.LZ4BlockOutputStream.write(LZ4BlockOutputStream.java:158)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.writeToStream(UnsafeRow.java:554)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:237)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:228)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:827)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/04/26 14:29:00 INFO DiskBlockManager: Shutdown hook called
19/04/26 14:29:00 INFO ShutdownHookManager: Shutdown hook called
Can anyone let me know if I am doing anything wrong here, like the memory allocation or something?, please suggest any alternatives to complete this job without getting the our of memory exception or worker node lost error. Any help or info is greatly appreciated.
Thanks!
at the end of the final stage and final mapper like in stage 5 it allocates 50 and completed 49 very quickly and at the 50th it takes 5 minutes and says that out of memory and fails.
The table I am reading is 40GB and I am joining 6 tables to that 40GB table
It sounds like a skewed data to me, most of the keys used for joining are in one partition. So instead spreading the work among multiple executors, Spark uses just one and overloads it. It affects both memory consumption and performance.
There are a few ways to deal with it:
Skewed dataset join in Spark?
How to repartition a dataframe in Spark scala on a skewed column?
when I run Scala application on Spark cluster in yarn mode(spark version 2.2.0),the application is using the pregel model, each vertex in the data graph sends message. the Exception information as follows:
Exception in thread "main" org.apache.spark.SparkException:
Job aborted due to stage failure: Task 29 in stage 25.0 failed 4 times,
most recent failure: Lost task 29.3 in stage 25.0 (TID 1632, 192.168.1.5, executor 1): java.io.IOException: org.apache.spark.SparkException:
Failed to get broadcast_22_piece0 of broadcast_22
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1310)
at org.apache.spark.broadcast.TorrentBroadcast.readBroadcastBlock(TorrentBroadcast.scala:206)
at org.apache.spark.broadcast.TorrentBroadcast._value$lzycompute(TorrentBroadcast.scala:66)
at org.apache.spark.broadcast.TorrentBroadcast._value(TorrentBroadcast.scala:66)
at org.apache.spark.broadcast.TorrentBroadcast.getValue(TorrentBroadcast.scala:96)
at org.apache.spark.broadcast.Broadcast.value(Broadcast.scala:70)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:86)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Failed to get broadcast_22_piece0 of broadcast_22
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply$mcVI$sp(TorrentBroadcast.scala:178)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:150)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$org$apache$spark$broadcast$TorrentBroadcast$$readBlocks$1.apply(TorrentBroadcast.scala:150)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.broadcast.TorrentBroadcast.org$apache$spark$broadcast$TorrentBroadcast$$readBlocks(TorrentBroadcast.scala:150)
at org.apache.spark.broadcast.TorrentBroadcast$$anonfun$readBroadcastBlock$1.apply(TorrentBroadcast.scala:222)
at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1303)
... 12 more
I have searched the exception online, and one of the suggestions is adding statement .set("spark.cleaner.ttl","2000")
but it still does not work well.
Can you help me? thanks a lot.
some sinnpets that may cause the above exception as follows:
val spark = SparkSession.builder.master("spark://node01.:7077").appName("ioce").getOrCreate()
.......
and in the program, joining dataframe is used(which I looked through online warns that may be also relevant to the exception).
I created a spark dataframe as a result of joining some other dataframes.
Now, calling any method on the dataframe fails.
It doesn't give specfic errors.
Only errors such as as ExecutorLostFailure, Slave lost, Container released on exited node.
I am not able to succesfully call even show() on dataframe.
Following is exception stack while calling show()
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 204 in stage 14.0 failed 4 times, most recent failure: Lost task 204.3 in stage 14.0 (TID 124823, ip-172-31-58-23.ec2.internal, executor 491): ExecutorLostFailure (executor 491 exited caused by one of the running tasks) Reason: Slave lost
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1569)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1557)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1556)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1556)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:815)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:815)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:815)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1784)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1739)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1728)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:631)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
at org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2153)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2366)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:245)
at org.apache.spark.sql.Dataset.show(Dataset.scala:644)
at org.apache.spark.sql.Dataset.show(Dataset.scala:603)
at org.apache.spark.sql.Dataset.show(Dataset.scala:612)
at com.example.DataCuration$.main(DataCurationMain.scala:81)
at com.example.DataCuration.main(DataCurationMain.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
My guess is, i am running out of memory.
What are the best ways to determine if that is so?
Turns out there was some issue with the machine.
Most probably low driver memory was constraining execution.