MATLAB: How to include mean and minimum in time calculator program - matlab

How can I get the mean(average) of my stimulation time instead of listing all the 100 stimulation time for manual calculation?
function [time] = Babtime(n)
N = 100;
t = zeros(N,1);
for k = 1:N
tic;
Bab(n);
Stimulationtime=toc
Also how can I get the minimum stimulation time without me manually checking for the minimum out of 1000 output time for the code below
function [time] = Haldtime(n)
N = 1000;
t = zeros(N,1);
for k = 1:N
tic;
Hald(n);
Stimulationtime=toc
Thank you

Store the toc values in an array, and then use min. For your code, you already appear to have created the array to store the time values (the array t):
function [time] = Haldtime(n)
N = 1000;
t = zeros(N,1);
for k = 1:N
tic;
Hald(n);
t(k)=toc;
end
disp(min(t));
time=min(t);
Of course, if you want the average (which is far more useful) then replace min with mean

To make it more handy, letting you use any function with any number of input arguments and with variable number of run cycles, you can modify your timer function to the following:
function [times, t_min, t_mean] = myTimer(funcH, sampling, varargin)
times = zeros(sampling, 1);
for ii = 1:sampling
tic;
funcH(varargin{:});
times(ii) = toc;
end
t_min = min(times);
t_mean = mean(times);
Then you can simply use this function to calculate run time of different functions. For your examples it will be:
[~, tmin, tavg] = myTimer(#Bab, 100, n);
or
[T, tmin, tavg] = myTimer(#Hald, 1000, n);
Note that in the second example all of the run times are saved in T, so later you can calculate different statistics besides min and mean.
It might be also useful to take a look at profile.

Related

How to speed up iterative function call in MatLab?

In MatLab I have to call the cdf of the t distribution (tcdf) iteratively (since the next input value depends on the previous output of tcdf), which unfortunately slows down my code massively.
tic
z = NaN(1e5,1);
z(1) = 1;
x = 2;
for ii = 2:1e5
x = tcdf(z(ii-1),x);
z(ii) = z(ii-1)*x;
end
toc
Elapsed time is 4.717087 seconds.
Is there a way to speed this up somehow?
For comparison:
tic
z = randn(1e5,1);
tcdf(z,5);
toc
Elapsed time is 0.091353 seconds.
Move the random number generation outside the loop as suggested below
numVal = 1e5
z = randn(numVal,1);
for ii = 2:numVal
z(ii) = z(ii-1) + z(ii);
end
tcdf(z,5);

Convert point cloud to voxels via averaging

I have the following data:
N = 10^3;
x = randn(N,1);
y = randn(N,1);
z = randn(N,1);
f = x.^2+y.^2+z.^2;
Now I want to split this continuous 3D space into nB bins.
nB = 20;
[~,~,x_bins] = histcounts(x,nB);
[~,~,y_bins] = histcounts(y,nB);
[~,~,z_bins] = histcounts(z,nB);
And put in each cube average f or nan if no observations happen in the cube:
F = nan(50,50,50);
for iX = 1:20
for iY = 1:20
for iZ = 1:20
idx = (x_bins==iX)&(y_bins==iY)&(z_bins==iZ);
F(iX,iY,iZ) = mean(f(idx));
end
end
end
isosurface(F,0.5)
This code does what I want. My problem is the speed. This code is extremely slow when N > 10^5 and nB = 100.
How can I speed up this code?
I also tried the accumarray() function:
subs=([x_bins,y_bins,z_bins]);
F2 = accumarray(subs,f,[],#mean);
all(F(:) == F2(:)) % false
However, this code produces a different result.
The problem with the code in the OP is that it tests all elements of the data for each element in the output array. The output array has nB^3 elements, the data has N elements, so the algorithm is O(N*nB^3). Instead, one can loop over the N elements of the input, and set the corresponding element in the output array, which is an operation O(N) (2nd code block below).
The accumarray solution in the OP needs to use the fillvals parameter, set it to NaN (3rd code block below).
To compare the results, one needs to explicitly test that both arrays have NaN in the same locations, and have equal non-NaN values elsewhere:
all( ( isnan(F(:)) & isnan(F2(:)) ) | ( F(:) == F2(:) ) )
% \-------same NaN values------/ \--same values--/
Here is code. All three versions produce identical results. Timings in Octave 4.4.1 (no JIT), in MATLAB the loop code should be faster. (Using input data from OP, with N=10^3 and nB=20).
%% OP's code, O(N*nB^3)
tic
F = nan(nB,nB,nB);
for iX = 1:nB
for iY = 1:nB
for iZ = 1:nB
idx = (x_bins==iX)&(y_bins==iY)&(z_bins==iZ);
F(iX,iY,iZ) = mean(f(idx));
end
end
end
toc
% Elapsed time is 1.61736 seconds.
%% Looping over input, O(N)
tic
s = zeros(nB,nB,nB);
c = zeros(nB,nB,nB);
ind = sub2ind([nB,nB,nB],x_bins,y_bins,z_bins);
for ii=1:N
s(ind(ii)) = s(ind(ii)) + f(ii);
c(ind(ii)) = c(ind(ii)) + 1;
end
F2 = s ./ c;
toc
% Elapsed time is 0.0606539 seconds.
%% Other alternative, using accumarray
tic
ind = sub2ind([nB,nB,nB],x_bins,y_bins,z_bins);
F3 = accumarray(ind,f,[nB,nB,nB],#mean,NaN);
toc
% Elapsed time is 0.14113 seconds.

Serious performance issue with iterating simulations

I recently stumbled upon a performance problem while implementing a simulation algorithm. I managed to find the bottleneck function (signally, it's the internal call to arrayfun that slows everything down):
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
x = arrayfun(#(x) find(x <= the_f,1,'first'),r);
sim = (histcounts(x,[1:k Inf]) ./ n).';
end
It is being used in other parts of code as follows:
h0 = zeros(1,sims);
for i = 1:sims
p = simulate_frequency(the_f,k,n);
h0(i) = max(abs(p - the_p));
end
Here are some possible values:
% Test Case 1
sims = 10000;
the_f = [0.3010; 0.4771; 0.6021; 0.6990; 0.7782; 0.8451; 0.9031; 0.9542; 1.0000];
k = 9;
n = 95;
% Test Case 2
sims = 10000;
the_f = [0.0413; 0.0791; 0.1139; 0.1461; 0.1760; 0.2041; 0.2304; 0.2552; 0.2787; 0.3010; 0.3222; 0.3424; 0.3617; 0.3802; 0.3979; 0.4149; 0.4313; 0.4471; 0.4623; 0.4771; 0.4913; 0.5051; 0.5185; 0.5314; 0.5440; 0.5563; 0.5682; 0.5797; 0.5910; 0.6020; 0.6127; 0.6232; 0.6334; 0.6434; 0.6532; 0.6627; 0.6720; 0.6812; 0.6901; 0.6989; 0.7075; 0.7160; 0.7242; 0.7323; 0.7403; 0.7481; 0.7558; 0.7634; 0.7708; 0.7781; 0.7853; 0.7923; 0.7993; 0.8061; 0.8129; 0.8195; 0.8260; 0.8325; 0.8388; 0.8450; 0.8512; 0.8573; 0.8633; 0.8692; 0.8750; 0.8808; 0.8864; 0.8920; 0.8976; 0.9030; 0.9084; 0.9138; 0.9190; 0.9242; 0.9294; 0.9344; 0.9395; 0.9444; 0.9493; 0.9542; 0.9590; 0.9637; 0.9684; 0.9731; 0.9777; 0.9822; 0.9867; 0.9912; 0.9956; 1.000];
k = 90;
n = 95;
The scalar sims must be in the range 1000 1000000. The vector of cumulated frequencies the_f never contains more than 100 elements. The scalar k represents the number of elements in the_f. Finally, the scalar n represents the number of elements in the empirical sample vector, and can even be very large (up to 10000 elements, as far as I can tell).
Any clue about how to improve the computation time of this process?
This seems to be slightly faster for me in the second test case, not the first. The time differences might be larger for longer the_f and larger values of n.
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
[row,col] = find(r <= the_f); % Implicit singleton expansion going on here!
[~,ind] = unique(col,'first');
x = row(ind);
sim = (histcounts(x,[1:k Inf]) ./ n).';
end
I'm using implicit singleton expansion in r <= the_f, use bsxfun if you have an older version of MATLAB (but you know the drill).
Find then returns row and column to all the locations where r is larger than the_f. unique finds the indices into the result for the first element of each column.
Credit: Andrei Bobrov over on MATLAB Answers
Another option (derived from this other answer) is a bit shorter but also a bit more obscure IMO:
mask = r <= the_f;
[x,~] = find(mask & (cumsum(mask,1)==1));
If I want performance, I would avoid arrayfun. Even this for loop is faster:
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
for i = 1:numel(r)
x(i) = find(r(i)<the_f,1,'first');
end
sim = (histcounts(x,[1:k Inf]) ./ n).';
end
Running 10000 sims with the first set of the sample data gives the following timing.
Your arrayfun function:
>Elapsed time is 2.848206 seconds.
The for loop function:
>Elapsed time is 0.938479 seconds.
Inspired by Cris Luengo's answer, I suggest below:
function sim = simulate_frequency(the_f,k,n)
r = rand(1,n); %
x = sum(r > the_f)+1;
sim = (histcounts(x,[1:k Inf]) ./ n)';
end
Time:
>Elapsed time is 0.264146 seconds.
You can use histcounts with r as its input:
r = rand(1,n);
sim = (histcounts(r,[-inf ;the_f]) ./ n).';
If histc is used instead of histcounts the whole simulation can be vectorized:
r = rand(n,sims);
p = histc(r, [-inf; the_f],1);
p = [p(1:end-2,:) ;sum(p(end-1:end,:))]./n;
h0 = max(abs(p-the_p(:))); %h0 = max(abs(bsxfun(#minus,p,the_p(:))));

Vectorization - Sum and Bessel function

Can anyone help vectorize this Matlab code? The specific problem is the sum and bessel function with vector inputs.
Thank you!
N = 3;
rho_g = linspace(1e-3,1,N);
phi_g = linspace(0,2*pi,N);
n = 1:3;
tau = [1 2.*ones(1,length(n)-1)];
for ii = 1:length(rho_g)
for jj = 1:length(phi_g)
% Coordinates
rho_o = rho_g(ii);
phi_o = phi_g(jj);
% factors
fc = cos(n.*(phi_o-phi_s));
fs = sin(n.*(phi_o-phi_s));
Ez_t(ii,jj) = sum(tau.*besselj(n,k(3)*rho_s).*besselh(n,2,k(3)*rho_o).*fc);
end
end
You could try to vectorize this code, which might be possible with some bsxfun or so, but it would be hard to understand code, and it is the question if it would run any faster, since your code already uses vector math in the inner loop (even though your vectors only have length 3). The resulting code would become very difficult to read, so you or your colleague will have no idea what it does when you have a look at it in 2 years time.
Before wasting time on vectorization, it is much more important that you learn about loop invariant code motion, which is easy to apply to your code. Some observations:
you do not use fs, so remove that.
the term tau.*besselj(n,k(3)*rho_s) does not depend on any of your loop variables ii and jj, so it is constant. Calculate it once before your loop.
you should probably pre-allocate the matrix Ez_t.
the only terms that change during the loop are fc, which depends on jj, and besselh(n,2,k(3)*rho_o), which depends on ii. I guess that the latter costs much more time to calculate, so it better to not calculate this N*N times in the inner loop, but only N times in the outer loop. If the calculation based on jj would take more time, you could swap the for-loops over ii and jj, but that does not seem to be the case here.
The result code would look something like this (untested):
N = 3;
rho_g = linspace(1e-3,1,N);
phi_g = linspace(0,2*pi,N);
n = 1:3;
tau = [1 2.*ones(1,length(n)-1)];
% constant part, does not depend on ii and jj, so calculate only once!
temp1 = tau.*besselj(n,k(3)*rho_s);
Ez_t = nan(length(rho_g), length(phi_g)); % preallocate space
for ii = 1:length(rho_g)
% calculate stuff that depends on ii only
rho_o = rho_g(ii);
temp2 = besselh(n,2,k(3)*rho_o);
for jj = 1:length(phi_g)
phi_o = phi_g(jj);
fc = cos(n.*(phi_o-phi_s));
Ez_t(ii,jj) = sum(temp1.*temp2.*fc);
end
end
Initialization -
N = 3;
rho_g = linspace(1e-3,1,N);
phi_g = linspace(0,2*pi,N);
n = 1:3;
tau = [1 2.*ones(1,length(n)-1)];
Nested loops form (Copy from your code and shown here for comparison only) -
for ii = 1:length(rho_g)
for jj = 1:length(phi_g)
% Coordinates
rho_o = rho_g(ii);
phi_o = phi_g(jj);
% factors
fc = cos(n.*(phi_o-phi_s));
fs = sin(n.*(phi_o-phi_s));
Ez_t(ii,jj) = sum(tau.*besselj(n,k(3)*rho_s).*besselh(n,2,k(3)*rho_o).*fc);
end
end
Vectorized solution -
%%// Term - 1
term1 = repmat(tau.*besselj(n,k(3)*rho_s),[N*N 1]);
%%// Term - 2
[n1,rho_g1] = meshgrid(n,rho_g);
term2_intm = besselh(n1,2,k(3)*rho_g1);
term2 = transpose(reshape(repmat(transpose(term2_intm),[N 1]),N,N*N));
%%// Term -3
angle1 = repmat(bsxfun(#times,bsxfun(#minus,phi_g,phi_s')',n),[N 1]);
fc = cos(angle1);
%%// Output
Ez_t = sum(term1.*term2.*fc,2);
Ez_t = transpose(reshape(Ez_t,N,N));
Points to note about this vectorization or code simplification –
‘fs’ doesn’t change the output of the script, Ez_t, so it could be removed for now.
The output seems to be ‘Ez_t’,which requires three basic terms in the code as –
tau.*besselj(n,k(3)*rho_s), besselh(n,2,k(3)*rho_o) and fc. These are calculated separately for vectorization as terms1,2 and 3 respectively.
All these three terms appear to be of 1xN sizes. Our aim thus becomes to calculate these three terms without loops. Now, the two loops run for N times each, thus giving us a total loop count of NxN. Thus, we must have NxN times the data in each such term as compared to when these terms were inside the nested loops.
This is basically the essence of the vectorization done here, as the three terms are represented by ‘term1’,’term2’ and ‘fc’ itself.
In order to give a self-contained answer, I'll copy the original initialization
N = 3;
rho_g = linspace(1e-3,1,N);
phi_g = linspace(0,2*pi,N);
n = 1:3;
tau = [1 2.*ones(1,length(n)-1)];
and generate some missing data (k(3) and rho_s and phi_s in the dimension of n)
rho_s = rand(size(n));
phi_s = rand(size(n));
k(3) = rand(1);
then you can compute the same Ez_t with multidimensional arrays:
[RHO_G, PHI_G, N] = meshgrid(rho_g, phi_g, n);
[~, ~, TAU] = meshgrid(rho_g, phi_g, tau);
[~, ~, RHO_S] = meshgrid(rho_g, phi_g, rho_s);
[~, ~, PHI_S] = meshgrid(rho_g, phi_g, phi_s);
FC = cos(N.*(PHI_G - PHI_S));
FS = sin(N.*(PHI_G - PHI_S)); % not used
EZ_T = sum(TAU.*besselj(N, k(3)*RHO_S).*besselh(N, 2, k(3)*RHO_G).*FC, 3).';
You can check afterwards that both matrices are the same
norm(Ez_t - EZ_T)

chirp phase alteration

I am trying to create a swept-frequency cosine, and I want to be able to set the phase as I please. I tried that code, but I get an error. I want to create a vector mat(1:40), where I can manually set its phase.
Fs = 32000; %Sampling Frequency
t = 0: 1/Fs: 10 -1/Fs; %Time
tt = 10; %Time when the chance occurs
f1 = 20; %Starting Frequency
f2 = 250; %Ending Frequency
cosineph = zeros(1,40); %Phase of cosines
for iMat= 1:40
k=iMat/2;
mat(iMat) = chirp(t,k*f1,tt,k*f2,'linear',cosineph(iMat));
end
The error that I am getting is " In an assignment A(I) = B, the number of elements in B and I must be the same."
Now, I am guessing it refers to variable t, so I tried implementing that into an embedded for, but didn't get the results I wanted.
Any advice?
Thanks
You are attempting to assign a vector (the output of chirp) to a single element of a matrix (mat). This won't work. You could use a cell array instead. In the example below I've replaced mat with a cell array, outArray.
Fs = 32000; %Sampling Frequency
t = 0: 1/Fs: 10 -1/Fs; %Time
tt = 10; %Time when the chance occurs
f1 = 20; %Starting Frequency
f2 = 250; %Ending Frequency
cosineph = zeros(1,40); %Phase of cosines
for iMat= 1:40
k=iMat/2;
outArray{iMat} = chirp(t,k*f1,tt,k*f2,'linear',cosineph(iMat));
end