I have a DataFrame like this:
root
|-- midx: double (nullable = true)
|-- future: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- _1: long (nullable = false)
| | |-- _2: long (nullable = false)
Using this code I am trying to transfer it into something like this:
val T = withFfutures.where($"midx" === 47.0).select("midx","future").collect().map((row: Row) =>
Row {
row.getAs[Seq[Row]]("future").map { case Row(e: Long, f: Long) =>
(row.getAs[Double]("midx"), e, f)
}
}
).toList
root
|-- id: double (nullable = true)
|-- event: long (nullable = true)
|-- future: long (nullable = true)
So the plan is to transfer the array of (event, future) into a dataframe that has those two fields as a column. I am trying to transfer T into a DataFrame like this:
val schema = StructType(Seq(
StructField("id", DoubleType, nullable = true)
, StructField("event", LongType, nullable = true)
, StructField("future", LongType, nullable = true)
))
val df = sqlContext.createDataFrame(context.parallelize(T), schema)
But when I a, trying to look into the df I get this error:
java.lang.ClassCastException: scala.collection.mutable.ArrayBuffer cannot be cast to java.lang.Double
After a while I found what was the problem: First and foremost that Array of structs in the column should be casted to Row. So the final code to build the final data frame should look like this:
val T = withFfutures.select("midx","future").collect().flatMap( (row: Row) =>
row.getAs[Seq[Row]]("future").map { case Row(e: Long, f: Long) =>
(row.getAs[Double]("midx") , e, f)
}.toList
).toList
val all = context.parallelize(T).toDF("id","event","future")
Related
This question already has answers here:
Rename nested field in spark dataframe
(5 answers)
Closed 3 years ago.
I am trying to change the names of a DataFrame columns in scala. I am easily able to change the column names for direct fields but I'm facing difficulty while converting array struct columns.
Below is my DataFrame schema.
|-- _VkjLmnVop: string (nullable = true)
|-- _KaTasLop: string (nullable = true)
|-- AbcDef: struct (nullable = true)
| |-- UvwXyz: struct (nullable = true)
| | |-- _MnoPqrstUv: string (nullable = true)
| | |-- _ManDevyIxyz: string (nullable = true)
But I need the schema like below
|-- vkj_lmn_vop: string (nullable = true)
|-- ka_tas_lop: string (nullable = true)
|-- abc_def: struct (nullable = true)
| |-- uvw_xyz: struct (nullable = true)
| | |-- mno_pqrst_uv: string (nullable = true)
| | |-- man_devy_ixyz: string (nullable = true)
For Non Struct columns I'm changing column names by below
def aliasAllColumns(df: DataFrame): DataFrame = {
df.select(df.columns.map { c =>
df.col(c)
.as(
c.replaceAll("_", "")
.replaceAll("([A-Z])", "_$1")
.toLowerCase
.replaceFirst("_", ""))
}: _*)
}
aliasAllColumns(file_data_df).show(1)
How I can change Struct column names dynamically?
You can create a recursive method to traverse the DataFrame schema for renaming the columns:
import org.apache.spark.sql.types._
def renameAllCols(schema: StructType, rename: String => String): StructType = {
def recurRename(schema: StructType): Seq[StructField] = schema.fields.map{
case StructField(name, dtype: StructType, nullable, meta) =>
StructField(rename(name), StructType(recurRename(dtype)), nullable, meta)
case StructField(name, dtype: ArrayType, nullable, meta) if dtype.elementType.isInstanceOf[StructType] =>
StructField(rename(name), ArrayType(StructType(recurRename(dtype.elementType.asInstanceOf[StructType])), true), nullable, meta)
case StructField(name, dtype, nullable, meta) =>
StructField(rename(name), dtype, nullable, meta)
}
StructType(recurRename(schema))
}
Testing it with the following example:
import org.apache.spark.sql.functions._
import spark.implicits._
val renameFcn = (s: String) =>
s.replace("_", "").replaceAll("([A-Z])", "_$1").toLowerCase.dropWhile(_ == '_')
case class C(A_Bc: Int, D_Ef: Int)
val df = Seq(
(10, "a", C(1, 2), Seq(C(11, 12), C(13, 14)), Seq(101, 102)),
(20, "b", C(3, 4), Seq(C(15, 16)), Seq(103))
).toDF("_VkjLmnVop", "_KaTasLop", "AbcDef", "ArrStruct", "ArrInt")
val newDF = spark.createDataFrame(df.rdd, renameAllCols(df.schema, renameFcn))
newDF.printSchema
// root
// |-- vkj_lmn_vop: integer (nullable = false)
// |-- ka_tas_lop: string (nullable = true)
// |-- abc_def: struct (nullable = true)
// | |-- a_bc: integer (nullable = false)
// | |-- d_ef: integer (nullable = false)
// |-- arr_struct: array (nullable = true)
// | |-- element: struct (containsNull = true)
// | | |-- a_bc: integer (nullable = false)
// | | |-- d_ef: integer (nullable = false)
// |-- arr_int: array (nullable = true)
// | |-- element: integer (containsNull = false)
as far as I know, it's not possible to rename nested fields directly.
From one side, you could try moving to a flat object.
However, if you need to keep the structure, you can play with spark.sql.functions.struct(*cols).
Creates a new struct column.
Parameters: cols – list of column names (string) or list of Column expressions
You will need to decompose all the schema, generate the aliases that you need and then compose it again using the struct function.
It's not the best solution. But it's something :)
Pd: I'm attaching the PySpark doc since it contains a better explanation than the Scala one.
I am trying to move data from GP to HDFS using Scala & Spark.
val execQuery = "select * from schema.tablename"
val yearDF = spark.read.format("jdbc").option("url", connectionUrl).option("dbtable", s"(${execQuery}) as year2016").option("user", devUserName).option("password", devPassword).option("partitionColumn","header_id").option("lowerBound", 19919927).option("upperBound", 28684058).option("numPartitions",30).load()
val yearDFSchema = yearDF.schema
The schema for yearDF is:
root
|-- source_system_name: string (nullable = true)
|-- table_refresh_delay_min: decimal(38,30) (nullable = true)
|-- release_number: decimal(38,30) (nullable = true)
|-- change_number: decimal(38,30) (nullable = true)
|-- interface_queue_enabled_flag: string (nullable = true)
|-- rework_enabled_flag: string (nullable = true)
|-- fdm_application_id: decimal(15,0) (nullable = true)
|-- history_enabled_flag: string (nullable = true)
The schema of same table on hive which is given by our project:
val hiveColumns = source_system_name:String|description:String|creation_date:Timestamp|status:String|status_date:Timestamp|table_refresh_delay_min:Timestamp|release_number:Double|change_number:Double|interface_queue_enabled_flag:String|rework_enabled_flag:String|fdm_application_id:Bigint|history_enabled_flag:String
So I took hiveColumns and created a new StructType as given below:
def convertDatatype(datatype: String): DataType = {
val convert = datatype match {
case "string" => StringType
case "bigint" => LongType
case "int" => IntegerType
case "double" => DoubleType
case "date" => TimestampType
case "boolean" => BooleanType
case "timestamp" => TimestampType
}
convert
}
val schemaList = hiveColumns.split("\\|")
val newSchema = new StructType(schemaList.map(col => col.split(":")).map(e => StructField(e(0), convertDatatype(e(1)), true)))
newSchema.printTreeString()
root
|-- source_system_name: string (nullable = true)
|-- table_refresh_delay_min: double (nullable = true)
|-- release_number: double (nullable = true)
|-- change_number: double (nullable = true)
|-- interface_queue_enabled_flag: string (nullable = true)
|-- rework_enabled_flag: string (nullable = true)
|-- fdm_application_id: long (nullable = true)
|-- history_enabled_flag: string (nullable = true)
When I try to apply my new schema: schemaStructType on yearDF as below, I get the exception:
Caused by: java.lang.RuntimeException: java.math.BigDecimal is not a valid external type for schema of double
The exception occurs due to conversion of decimal to double.
What I don't understand is how can I convert the datatype of columns: table_refresh_delay_min, release_number, change_number, fdm_application_id in the StructType: newSchema from DoubleType to their corresponding datatypes present in yearDF's Schema. i.e.
If the column in yearDFSchema has a decimal datatype with precision more than zero, in this case decimal(38,30), I need to convert the same column's datatype in newSchema to DecimalType(38,30)
Could anyone let me know how can I achieve it ?
Errors like this occur when you try to apply schema on RDD[Row], using Developer's API functions:
def createDataFrame(rows: List[Row], schema: StructType): DataFrame
def createDataFrame(rowRDD: JavaRDD[Row], schema: StructType): DataFrame
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
In such cases stored data types have to match external (i.e. Value type in Scala) data types as listed in the official SQL and no type casting or coercion is applied.
Therefore it is your responsibility as an user to ensure that the date and schema are compatible.
The description of the problem you've provided indicates rather different scenario, which asks for CAST. Let's create dataset with exact the same schema as in your example:
val yearDF = spark.createDataFrame(
sc.parallelize(Seq[Row]()),
StructType(Seq(
StructField("source_system_name", StringType),
StructField("table_refresh_delay_min", DecimalType(38, 30)),
StructField("release_number", DecimalType(38, 30)),
StructField("change_number", DecimalType(38, 30)),
StructField("interface_queue_enabled_flag", StringType),
StructField("rework_enabled_flag", StringType),
StructField("fdm_application_id", DecimalType(15, 0)),
StructField("history_enabled_flag", StringType)
)))
yearDF.printSchema
root
|-- source_system_name: string (nullable = true)
|-- table_refresh_delay_min: decimal(38,30) (nullable = true)
|-- release_number: decimal(38,30) (nullable = true)
|-- change_number: decimal(38,30) (nullable = true)
|-- interface_queue_enabled_flag: string (nullable = true)
|-- rework_enabled_flag: string (nullable = true)
|-- fdm_application_id: decimal(15,0) (nullable = true)
|-- history_enabled_flag: string (nullable = true)
and desired types like
val dtypes = Seq(
"source_system_name" -> "string",
"table_refresh_delay_min" -> "double",
"release_number" -> "double",
"change_number" -> "double",
"interface_queue_enabled_flag" -> "string",
"rework_enabled_flag" -> "string",
"fdm_application_id" -> "long",
"history_enabled_flag" -> "string"
)
then you can just map:
val mapping = dtypes.toMap
yearDF.select(yearDF.columns.map { c => col(c).cast(mapping(c)) }: _*).printSchema
root
|-- source_system_name: string (nullable = true)
|-- table_refresh_delay_min: double (nullable = true)
|-- release_number: double (nullable = true)
|-- change_number: double (nullable = true)
|-- interface_queue_enabled_flag: string (nullable = true)
|-- rework_enabled_flag: string (nullable = true)
|-- fdm_application_id: long (nullable = true)
|-- history_enabled_flag: string (nullable = true)
This of course assumes that actual and desired types are compatible, and CAST is allowed.
If you still experience problems due you to peculiarities of specific JDBC driver, you should consider placing cast directly in the query, either manually (In Apache Spark 2.0.0, is it possible to fetch a query from an external database (rather than grab the whole table)?)
val externalDtypes = Seq(
"source_system_name" -> "text",
"table_refresh_delay_min" -> "double precision",
"release_number" -> "float8",
"change_number" -> "float8",
"interface_queue_enabled_flag" -> "string",
"rework_enabled_flag" -> "string",
"fdm_application_id" -> "bigint",
"history_enabled_flag" -> "string"
)
val externalDtypes = dtypes.map {
case (c, t) => s"CAST(`$c` AS $t)"
} .mkString(", ")
val dbTable = s"""(select $fields from schema.tablename) as tmp"""
or through custom schema:
spark.read
.format("jdbc")
.option(
"customSchema",
dtypes.map { case (c, t) => s"`$c` $t" } .mkString(", "))
...
.load()
I need to create a schema using existing df field.
Consider this example dataframe
scala> case class prd (a:Int, b:Int)
defined class prd
scala> val df = Seq((Array(prd(10,20),prd(15,30),prd(20,25)))).toDF("items")
df: org.apache.spark.sql.DataFrame = [items: array<struct<a:int,b:int>>]
scala> df.printSchema
root
|-- items: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: integer (nullable = false)
| | |-- b: integer (nullable = false)
I need one more field "items_day1" similar to "items" for df2. Right now, I'm doing it like below which is a workaround
scala> val df2=df.select('items,'items.as("item_day1"))
df2: org.apache.spark.sql.DataFrame = [items: array<struct<a:int,b:int>>, item_day1: array<struct<a:int,b:int>>]
scala> df2.printSchema
root
|-- items: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: integer (nullable = false)
| | |-- b: integer (nullable = false)
|-- item_day1: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- a: integer (nullable = false)
| | |-- b: integer (nullable = false)
scala>
But how to get that using the df.schema.add() or df.schema.copy() functions?.
EDIT1:
I'm trying like below
val (a,b) = (df.schema,df.schema) // works
a("items") //works
b.add(a("items").as("items_day1")) //Error..
To add a new field to your DataFrame schema (which is of StructType) with the same structure but a different top-level name of the existing field, you can copy the StructField with a modified StructField member name, as shown below:
import org.apache.spark.sql.types._
case class prd (a:Int, b:Int)
val df = Seq((Array(prd(10,20), prd(15,30), prd(20,25)))).toDF("items")
val schema = df.schema
// schema: org.apache.spark.sql.types.StructType = StructType(
// StructField(items, ArrayType(
// StructType(StructField(a,IntegerType,false), StructField(b,IntegerType,false)
// ), true), true)
// )
val newSchema = schema.find(_.name == "items") match {
case Some(field) => schema.add(field.copy(name = "items_day1"))
case None => schema
}
// newSchema: org.apache.spark.sql.types.StructType = StructType(
// StructField(items, ArrayType(
// StructType(StructField(a,IntegerType,false), StructField(b,IntegerType,false)
// ), true), true),
// StructField(items_day1, ArrayType(
// StructType(StructField(a,IntegerType,false), StructField(b,IntegerType,false)
// ), true), true)
// )
I am trying to convert all the headers / column names of a DataFrame in Spark-Scala. as of now I come up with following code which only replaces a single column name.
for( i <- 0 to origCols.length - 1) {
df.withColumnRenamed(
df.columns(i),
df.columns(i).toLowerCase
);
}
If structure is flat:
val df = Seq((1L, "a", "foo", 3.0)).toDF
df.printSchema
// root
// |-- _1: long (nullable = false)
// |-- _2: string (nullable = true)
// |-- _3: string (nullable = true)
// |-- _4: double (nullable = false)
the simplest thing you can do is to use toDF method:
val newNames = Seq("id", "x1", "x2", "x3")
val dfRenamed = df.toDF(newNames: _*)
dfRenamed.printSchema
// root
// |-- id: long (nullable = false)
// |-- x1: string (nullable = true)
// |-- x2: string (nullable = true)
// |-- x3: double (nullable = false)
If you want to rename individual columns you can use either select with alias:
df.select($"_1".alias("x1"))
which can be easily generalized to multiple columns:
val lookup = Map("_1" -> "foo", "_3" -> "bar")
df.select(df.columns.map(c => col(c).as(lookup.getOrElse(c, c))): _*)
or withColumnRenamed:
df.withColumnRenamed("_1", "x1")
which use with foldLeft to rename multiple columns:
lookup.foldLeft(df)((acc, ca) => acc.withColumnRenamed(ca._1, ca._2))
With nested structures (structs) one possible option is renaming by selecting a whole structure:
val nested = spark.read.json(sc.parallelize(Seq(
"""{"foobar": {"foo": {"bar": {"first": 1.0, "second": 2.0}}}, "id": 1}"""
)))
nested.printSchema
// root
// |-- foobar: struct (nullable = true)
// | |-- foo: struct (nullable = true)
// | | |-- bar: struct (nullable = true)
// | | | |-- first: double (nullable = true)
// | | | |-- second: double (nullable = true)
// |-- id: long (nullable = true)
#transient val foobarRenamed = struct(
struct(
struct(
$"foobar.foo.bar.first".as("x"), $"foobar.foo.bar.first".as("y")
).alias("point")
).alias("location")
).alias("record")
nested.select(foobarRenamed, $"id").printSchema
// root
// |-- record: struct (nullable = false)
// | |-- location: struct (nullable = false)
// | | |-- point: struct (nullable = false)
// | | | |-- x: double (nullable = true)
// | | | |-- y: double (nullable = true)
// |-- id: long (nullable = true)
Note that it may affect nullability metadata. Another possibility is to rename by casting:
nested.select($"foobar".cast(
"struct<location:struct<point:struct<x:double,y:double>>>"
).alias("record")).printSchema
// root
// |-- record: struct (nullable = true)
// | |-- location: struct (nullable = true)
// | | |-- point: struct (nullable = true)
// | | | |-- x: double (nullable = true)
// | | | |-- y: double (nullable = true)
or:
import org.apache.spark.sql.types._
nested.select($"foobar".cast(
StructType(Seq(
StructField("location", StructType(Seq(
StructField("point", StructType(Seq(
StructField("x", DoubleType), StructField("y", DoubleType)))))))))
).alias("record")).printSchema
// root
// |-- record: struct (nullable = true)
// | |-- location: struct (nullable = true)
// | | |-- point: struct (nullable = true)
// | | | |-- x: double (nullable = true)
// | | | |-- y: double (nullable = true)
For those of you interested in PySpark version (actually it's same in Scala - see comment below) :
merchants_df_renamed = merchants_df.toDF(
'merchant_id', 'category', 'subcategory', 'merchant')
merchants_df_renamed.printSchema()
Result:
root
|-- merchant_id: integer (nullable = true)
|-- category: string (nullable = true)
|-- subcategory: string (nullable = true)
|-- merchant: string (nullable = true)
def aliasAllColumns(t: DataFrame, p: String = "", s: String = ""): DataFrame =
{
t.select( t.columns.map { c => t.col(c).as( p + c + s) } : _* )
}
In case is isn't obvious, this adds a prefix and a suffix to each of the current column names. This can be useful when you have two tables with one or more columns having the same name, and you wish to join them but still be able to disambiguate the columns in the resultant table. It sure would be nice if there were a similar way to do this in "normal" SQL.
Suppose the dataframe df has 3 columns id1, name1, price1
and you wish to rename them to id2, name2, price2
val list = List("id2", "name2", "price2")
import spark.implicits._
val df2 = df.toDF(list:_*)
df2.columns.foreach(println)
I found this approach useful in many cases.
Sometime we have the column name is below format in SQLServer or MySQL table
Ex : Account Number,customer number
But Hive tables do not support column name containing spaces, so please use below solution to rename your old column names.
Solution:
val renamedColumns = df.columns.map(c => df(c).as(c.replaceAll(" ", "_").toLowerCase()))
df = df.select(renamedColumns: _*)
tow table join not rename the joined key
// method 1: create a new DF
day1 = day1.toDF(day1.columns.map(x => if (x.equals(key)) x else s"${x}_d1"): _*)
// method 2: use withColumnRenamed
for ((x, y) <- day1.columns.filter(!_.equals(key)).map(x => (x, s"${x}_d1"))) {
day1 = day1.withColumnRenamed(x, y)
}
works!
I'm currently trying to extract a database from MongoDB and use Spark to ingest into ElasticSearch with geo_points.
The Mongo database has latitude and longitude values, but ElasticSearch requires them to be casted into the geo_point type.
Is there a way in Spark to copy the lat and lon columns to a new column that is an array or struct?
Any help is appreciated!
I assume you start with some kind of flat schema like this:
root
|-- lat: double (nullable = false)
|-- long: double (nullable = false)
|-- key: string (nullable = false)
First lets create example data:
import org.apache.spark.sql.Row
import org.apache.spark.sql.functions.{col, udf}
import org.apache.spark.sql.types._
val rdd = sc.parallelize(
Row(52.23, 21.01, "Warsaw") :: Row(42.30, 9.15, "Corte") :: Nil)
val schema = StructType(
StructField("lat", DoubleType, false) ::
StructField("long", DoubleType, false) ::
StructField("key", StringType, false) ::Nil)
val df = sqlContext.createDataFrame(rdd, schema)
An easy way is to use an udf and case class:
case class Location(lat: Double, long: Double)
val makeLocation = udf((lat: Double, long: Double) => Location(lat, long))
val dfRes = df.
withColumn("location", makeLocation(col("lat"), col("long"))).
drop("lat").
drop("long")
dfRes.printSchema
and we get
root
|-- key: string (nullable = false)
|-- location: struct (nullable = true)
| |-- lat: double (nullable = false)
| |-- long: double (nullable = false)
A hard way is to transform your data and apply schema afterwards:
val rddRes = df.
map{case Row(lat, long, key) => Row(key, Row(lat, long))}
val schemaRes = StructType(
StructField("key", StringType, false) ::
StructField("location", StructType(
StructField("lat", DoubleType, false) ::
StructField("long", DoubleType, false) :: Nil
), true) :: Nil
)
sqlContext.createDataFrame(rddRes, schemaRes).show
and we get an expected output
+------+-------------+
| key| location|
+------+-------------+
|Warsaw|[52.23,21.01]|
| Corte| [42.3,9.15]|
+------+-------------+
Creating nested schema from scratch can be tedious so if you can I would recommend the first approach. It can be easily extended if you need more sophisticated structure:
case class Pin(location: Location)
val makePin = udf((lat: Double, long: Double) => Pin(Location(lat, long))
df.
withColumn("pin", makePin(col("lat"), col("long"))).
drop("lat").
drop("long").
printSchema
and we get expected output:
root
|-- key: string (nullable = false)
|-- pin: struct (nullable = true)
| |-- location: struct (nullable = true)
| | |-- lat: double (nullable = false)
| | |-- long: double (nullable = false)
Unfortunately you have no control over nullable field so if is important for your project you'll have to specify schema.
Finally you can use struct function introduced in 1.4:
import org.apache.spark.sql.functions.struct
df.select($"key", struct($"lat", $"long").alias("location"))
Try this:
import org.apache.spark.sql.functions._
df.registerTempTable("dt")
dfres = sql("select struct(lat,lon) as colName from dt")