I have below the following example, which shows the bars for the following vectors:
% % For Phi/Psi = +/-10
CoverageArea_mean_10 = [84.4735,21.1779,6.4247,2.1416];
CoverageArea_min_10 = [98.5128,21.1779,6.9007,2.1416];
CoverageArea_max_10 = [70.1963,19.0363,5.9488,2.1416];
% For Phi/Psi = +/-40
CoverageArea_mean_40 = [0,4.5211,2.3795,0];
CoverageArea_min_40 = [92.5640,21.1779,6.9007,2.1416];
CoverageArea_max_40 = [0,0.4759,0.2380,0];
as shown below
The problem is there are some zero values, and I need them to be represented as a line on the legend. How can I fix it?
The expected results:
%% Plotting the coverage area
x = [15,30,45,60];
figure
COVERAGE = [CoverageArea_min_10;CoverageArea_mean_10;CoverageArea_max_10];
COVERAGEAREA = [COVERAGE(:,1)';COVERAGE(:,2)';COVERAGE(:,3)';COVERAGE(:,4)'];
bar(x,COVERAGEAREA);
xlabel( 'Semi-angle at half power, \Phi_1_/_2 (°)' );
ylabel('Coverage area (m²)');
BarNames = {'min','mean','max'};
legend(BarNames,'Location','best');
grid on;
figure
COVERAGE1 = [CoverageArea_min_40;CoverageArea_mean_40;CoverageArea_max_40];
COVERAGEAREA1 = [COVERAGE1(:,1)';COVERAGE1(:,2)';COVERAGE1(:,3)';COVERAGE1(:,4)'];
bar(x,COVERAGEAREA1);
xlabel( 'Semi-angle at half power, \Phi_1_/_2 (°)' );
ylabel('Coverage area (m²)');
BarNames = {'min','mean','max'};
legend(BarNames,'Location','best');
grid on;
close all; clear all;
% Create figure
figure1 = figure('WindowState','maximized');
% Create axes
axes1 = axes('Parent',figure1);
hold(axes1,'on');
% Create multiple lines using matrix input to bar
% % For Phi/Psi = +/-10
CoverageArea_mean_10 = [84.4735,21.1779,6.4247,2.1416];
CoverageArea_min_10 = [98.5128,21.1779,6.9007,2.1416];
CoverageArea_max_10 = [70.1963,19.0363,5.9488,2.1416];
% For Phi/Psi = +/-40
CoverageArea_mean_40 = [0,4.5211,2.3795,0];
CoverageArea_min_40 = [92.5640,21.1779,6.9007,2.1416];
CoverageArea_max_40 = [0,0.4759,0.2380,0];
%% Plotting the coverage area
x = [15,30,45,60];
COVERAGE = [CoverageArea_min_10;CoverageArea_mean_10;CoverageArea_max_10];
COVERAGE1 = [CoverageArea_min_40;CoverageArea_mean_40;CoverageArea_max_40];
COVERAGEAREA1 = [COVERAGE1(:,1)';COVERAGE1(:,2)';COVERAGE1(:,3)';COVERAGE1(:,4)'];
COVERAGEAREA = [COVERAGE(:,1)';COVERAGE(:,2)';COVERAGE(:,3)';COVERAGE(:,4)'];
bar1 = bar(x,COVERAGEAREA1,'Parent',axes1);
set(bar1(3),'DisplayName','min');
set(bar1(2),'DisplayName','mean');
set(bar1(1),'DisplayName','max');
% Create ylabel
ylabel('Coverage area $(m^2)$','Interpreter','latex');
% Create xlabel
xlabel('$\phi_{1/2}$','Interpreter','latex');
box(axes1,'on');
grid(axes1,'on');
hold(axes1,'off');
% Set the remaining axes properties
set(axes1,'XTick',[15 30 45 60]);
% Create legend
legend1 = legend(axes1,'show');
set(legend1,'Interpreter','latex','AutoUpdate','off','Location','best');
% Create rectangle
annotation(figure1,'rectangle',...
[0.854166666666666 0.861889927310488 0.0223958333333336 0.0290758047767393],...
'Color',[1 1 1],...
'FaceColor',[1 1 1]);
% Create line
annotation(figure1,'line',[0.8578125 0.873958333333333],...
[0.881619937694704 0.881619937694704]);
% Create line
annotation(figure1,'line',[0.858333333333333 0.8734375],...
[0.867082035306334 0.867082035306334]);
Here is the sample code that i used to compare two groups with random mean and standard deviation. However, i want to plot both groups in a single box in the box plot as shown in the attached figure where x-axis is group 1 and y-axis is group 2. I could not find any code doing this. Can some one please help me with this?
clc
clear
x=[rand(1,10) rand(1,10) rand(1,10) rand(1,10) rand(1,10) rand(1,10)];
n=10 ; xx=([1:6])'; % example
r=repmat(xx,1,n)';
g=r(:)';
positions = [1 2 3 4 5 6 ];
h=boxplot(x,g, 'positions', positions);
set(h,'linewidth',2)
set(gca,'xtick',[mean(positions(1:2)) mean(positions(3:4)) mean(positions(5:6)) ])
set(gca,'xticklabel',{'exp1','exp2','exp3'},'Fontsize',28)
color = ['c', 'y', 'c', 'y','c', 'y'];
h = findobj(gca,'Tag','Box');
for j=1:length(h)
patch(get(h(j),'XData'),get(h(j),'YData'),color(j),'FaceAlpha',.5);
end
now i want yellow and blue for exp1 in one box as shown below.. similarly for exp2 and exp3 so on.. so 3 boxes in one boxplot..Ideally this should work for any number of experiments.
For a single two-sided boxplot, we can use the 'Orientation' property, and overlay 2 boxplots one above the other:
x = [1 2 3 4 5 6 7 1 2 3 4 5 6 7];
group = [1,1,1,1,1,1,1,2,2,2,2,2,2,2];
% we need the precntiles of the groups so the boxes will overlap.
% on each boxplot we set the width to the other boxplot hight:
p1 = prctile(x(group==1),[25 75]);
p2 = prctile(x(group==2),[25 75]);
ax = axes;
% first group is vertical:
boxplot(x(group==2),'Positions',mean(x(group==1)),...
'Orientation','vertical','Widths',p1(2)-p1(1),'Colors','r');
lims1 = axis;
hold on
% secound group is horizontal:
boxplot(x(group==1),'Positions',mean(x(group==2)),...
'Orientation','horizontal','Widths',p2(2)-p2(1),'Colors','k');
% the values of the axis are no longer relevant, since they have two
% different meanings, depend on the group. So we hide them.
ax.XAxis.Visible = 'off';
ax.YAxis.Visible = 'off';
hold off
lims2 = axis;
% because each axis represent to different things, we make sure we see
% everything:
axis([max(lims1(1),lims2(1)),...
min(lims1(2),lims2(2)),...
min(lims1(3),lims2(3)),...
max(lims1(4),lims2(4))])
To create multiple two-sided box-plots you need to use an axes for each experiment:
x = rand(10,6);
nsp = floor(size(x,2)/2); % the number of subplots
meanx = mean(x);
% we need the precntiles of the groups so the boxes will overlap.
% on each boxplot we set the width to the other boxplot hight:
width = range(prctile(x,[25; 75]));
main_ax = axes; % create a tmporary axes
% we get the measurements of the ploting area:
pos = main_ax.Position;
% and divide it to our data:
axwidth = pos(3)/nsp; % the width of each group
% the bottom left corner of each group:
corner = linspace(pos(1),pos(3)+pos(1),nsp+1);
clf % clear the area!
% now we plot each pair of boxplot on a different subplot:
for k = 1:2:size(x,2)
ax = axes('Position',[corner((k+1)/2) pos(2) axwidth pos(4)]);
hold on
% first group is vertical:
boxplot(x(:,k),'Positions',meanx(k+1),...
'Orientation','vertical','Widths',width(k+1),'Colors','r');
% secound group is horizontal:
boxplot(x(:,k+1),'Positions',meanx(k),...
'Orientation','horizontal','Widths',width(k),'Colors','k');
% the values of the y-axis are no longer relevant, since they have two
% different meanings, depend on the group. So we hide them.
ax.YAxis.Visible = 'off';
% we use the x-axis to label the pairs of boxplots:
ax.XAxis.TickLabels = ['Exp ' num2str((k+1)/2)];
% because each axis represent to different things, we make sure we see
% everything:
minx = min(min(x(:,k:k+1)))*0.1;
maxx = max(max(x(:,k:k+1)))*1.1;
axis ([minx maxx minx maxx])
hold off
box off
% set the locations to the exact same place:
bx = findobj(ax,'tag','Box'); % get the boxes
posXdif = bx(2).XData(1)-bx(1).XData(1); % get the horizontal difference
posYdif = bx(2).YData(1)-bx(1).YData(1); % get the vertical difference
bx2Xdata = get(ax.Children(2).Children,{'XData'}); % get all X-data of box 2
bx2Ydata = get(ax.Children(2).Children,{'YData'}); % get all Y-data of box 2
% substruct horizontal difference X-data:
set(ax.Children(2).Children,{'XData'},...
cellfun(#(x) x-posXdif,bx2Xdata,'UniformOutput',false))
% substruct vertical difference Y-data:
set(ax.Children(2).Children,{'YData'},...
cellfun(#(y) y-posYdif,bx2Ydata,'UniformOutput',false))
end
I have implemented the Self-Organizing Map(SOM) algorithm in MATLAB. Suppose each of the data points are represented in 2-dimensional space. The problem is that I want to visualize the movement of each of the data points in the training phase i.e. I want to see how the points are moving and eventually forming clusters as the algorithm is in progress say at every fix duration. I believe that this can be done through Simulation in MATLAB,but I don't know how to incorporate my MATLAB code for visualization?
I developed a code example to visualize clustering data with multiple dimensions using all possible data projection in 2-D. It may not be the best idea for visualization (there are techniques developed for this, as SOM itself may be used for this need), specially for a higher dimension numbers, but when the number of possible projections (n-1)! is not that high it is a quite good visualizer.
Cluster Algorithm
Since I needed access to the code so that I could save the cluster means and cluster labels for each iteration, I used a fast kmeans algorithm available at FEX by Mo Chen, but I had to adapt it so I could have this access. The adapted code is the following:
function [label,m] = litekmeans(X, k)
% Perform k-means clustering.
% X: d x n data matrix
% k: number of seeds
% Written by Michael Chen (sth4nth#gmail.com).
n = size(X,2);
last = 0;
iter = 1;
label{iter} = ceil(k*rand(1,n)); % random initialization
checkLabel = label{iter};
m = {};
while any(checkLabel ~= last)
[u,~,checkLabel] = unique(checkLabel); % remove empty clusters
k = length(u);
E = sparse(1:n,checkLabel,1,n,k,n); % transform label into indicator matrix
curM = X*(E*spdiags(1./sum(E,1)',0,k,k)); % compute m of each cluster
m{iter} = curM;
last = checkLabel';
[~,checkLabel] = max(bsxfun(#minus,curM'*X,dot(curM,curM,1)'/2),[],1); % assign samples to the nearest centers
iter = iter + 1;
label{iter} = checkLabel;
end
% Get last clusters centers
m{iter} = curM;
% If to remove empty clusters:
%for k=1:iter
% [~,~,label{k}] = unique(label{k});
%end
Gif Creation
I also used #Amro's Matlab video tutorial for the gif creation.
Distinguishable Colors
I used this great FEX by Tim Holy for making the cluster colors easier to distinguish.
Resulting code
My resulting code is as follows. I had some issues because the number of clusters would change for each iteration which would cause scatter plot update to delete all cluster centers without giving any errors. Since I didn't noticed that, I was trying to workaround the scatter function with any obscure method that I could find the web (btw, I found a really nice scatter plot alternative here), but fortunately I got what was happening going back to this today. Here is the code I did for it, you may feel free to use it, adapt it, but please keep my reference if you use it.
function varargout=kmeans_test(data,nClusters,plotOpts,dimLabels,...
bigXDim,bigYDim,gifName)
%
% [label,m,figH,handles]=kmeans_test(data,nClusters,plotOpts,...
% dimLabels,bigXDim,bigYDim,gifName)
% Demonstrate kmeans algorithm iterative progress. Inputs are:
%
% -> data (rand(5,100)): the data to use.
%
% -> nClusters (7): number of clusters to use.
%
% -> plotOpts: struct holding the following fields:
%
% o leftBase: the percentage distance from the left
%
% o rightBase: the percentage distance from the right
%
% o bottomBase: the percentage distance from the bottom
%
% o topBase: the percentage distance from the top
%
% o FontSize: FontSize for axes labels.
%
% o widthUsableArea: Total width occupied by axes
%
% o heigthUsableArea: Total heigth occupied by axes
%
% -> bigXDim (1): the big subplot x dimension
%
% -> bigYDim (2): the big subplot y dimension
%
% -> dimLabels: If you want to specify dimensions labels
%
% -> gifName: gif file name to save
%
% Outputs are:
%
% -> label: Sample cluster center number for each iteration
%
% -> m: cluster center mean for each iteration
%
% -> figH: figure handle
%
% -> handles: axes handles
%
%
% - Creation Date: Fri, 13 Sep 2013
% - Last Modified: Mon, 16 Sep 2013
% - Author(s):
% - W.S.Freund <wsfreund_at_gmail_dot_com>
%
% TODO List (?):
%
% - Use input parser
% - Adapt it to be able to cluster any algorithm function.
% - Use arrows indicating cluster centers movement before moving them.
% - Drag and drop small axes to big axes.
%
% Pre-start
if nargin < 7
gifName = 'kmeansClusterization.gif';
if nargin < 6
bigYDim = 2;
if nargin < 5
bigXDim = 1;
if nargin < 4
nDim = size(data,1);
maxDigits = numel(num2str(nDim));
dimLabels = mat2cell(sprintf(['Dim %0' num2str(maxDigits) 'd'],...
1:nDim),1,zeros(1,nDim)+4+maxDigits);
if nargin < 3
plotOpts = struct('leftBase',.05,'rightBase',.02,...
'bottomBase',.05,'topBase',.02,'FontSize',10,...
'widthUsableArea',.87,'heigthUsableArea',.87);
if nargin < 2
nClusters = 7;
if nargin < 1
center1 = [1; 0; 0; 0; 0];
center2 = [0; 1; 0; 0; 0];
center3 = [0; 0; 1; 0; 0];
center4 = [0; 0; 0; 1; 0];
center5 = [0; 0; 0; 0; 1];
center6 = [0; 0; 0; 0; 1.5];
center7 = [0; 0; 0; 1.5; 1];
data = [...
bsxfun(#plus,center1,.5*rand(5,20)) ...
bsxfun(#plus,center2,.5*rand(5,20)) ...
bsxfun(#plus,center3,.5*rand(5,20)) ...
bsxfun(#plus,center4,.5*rand(5,20)) ...
bsxfun(#plus,center5,.5*rand(5,20)) ...
bsxfun(#plus,center6,.2*rand(5,20)) ...
bsxfun(#plus,center7,.2*rand(5,20)) ...
];
end
end
end
end
end
end
end
% NOTE of advice: It seems that Matlab does not test while on
% refreshdata if the dimension of the inputs are equivalent for the
% XData, YData and CData while using scatter. Because of this I wasted
% a lot of time trying to debug what was the problem, trying many
% workaround since my cluster centers would disappear for no reason.
% Draw axes:
nDim = size(data,1);
figH = figure;
set(figH,'Units', 'normalized', 'Position',...
[0, 0, 1, 1],'Color','w','Name',...
'k-means example','NumberTitle','Off',...
'MenuBar','none','Toolbar','figure',...
'Renderer','zbuffer');
% Create dintinguishable colors matrix:
colorMatrix = distinguishable_colors(nClusters);
% Create axes, deploy them on handles matrix more or less how they
% will be positioned:
[handles,horSpace,vertSpace] = ...
createAxesGrid(5,5,plotOpts,dimLabels);
% Add main axes
bigSubSize = ceil(nDim/2);
bigSubVec(bigSubSize^2) = 0;
for k = 0:nDim-bigSubSize
bigSubVec(k*bigSubSize+1:(k+1)*bigSubSize) = ...
... %(nDim-bigSubSize+k)*nDim+1:(nDim-bigSubSize+k)*nDim+(nDim-bigSubSize+1);
bigSubSize+nDim*k:nDim*(k+1);
end
handles(bigSubSize,bigSubSize) = subplot(nDim,nDim,bigSubVec,...
'FontSize',plotOpts.FontSize,'box','on');
bigSubplotH = handles(bigSubSize,bigSubSize);
horSpace(bigSubSize,bigSubSize) = bigSubSize;
vertSpace(bigSubSize,bigSubSize) = bigSubSize;
set(bigSubplotH,'NextPlot','add',...
'FontSize',plotOpts.FontSize,'box','on',...
'XAxisLocation','top','YAxisLocation','right');
% Squeeze axes through space to optimize space usage and improve
% visualization capability:
[leftPos,botPos,subplotWidth,subplotHeight]=setCustomPlotArea(...
handles,plotOpts,horSpace,vertSpace);
pColorAxes = axes('Position',[leftPos(end) botPos(end) ...
subplotWidth subplotHeight],'Parent',figH);
pcolor([1:nClusters+1;1:nClusters+1])
% image(reshape(colorMatrix,[1 size(colorMatrix)])); % Used image to
% check if the upcoming buggy behaviour would be fixed. I was not
% lucky, though...
colormap(pColorAxes,colorMatrix);
% Change XTick positions to its center:
set(pColorAxes,'XTick',.5:1:nClusters+.5);
set(pColorAxes,'YTick',[]);
% Change its label to cluster number:
set(pColorAxes,'XTickLabel',[nClusters 1:nClusters-1]); % FIXME At
% least on my matlab I have to use this buggy way to set XTickLabel.
% Am I doing something wrong? Since I dunno why this is caused, I just
% change the code so that it looks the way it should look, but this is
% quite strange...
xlabel(pColorAxes,'Clusters Colors','FontSize',plotOpts.FontSize);
% Now iterate throw data and get cluster information:
[label,m]=litekmeans(data,nClusters);
nIters = numel(m)-1;
scatterColors = colorMatrix(label{1},:);
annH = annotation('textbox',[leftPos(1),botPos(1) subplotWidth ...
subplotHeight],'String',sprintf('Start Conditions'),'EdgeColor',...
'none','FontSize',18);
% Creates dimData_%d variables for first iteration:
for curDim=1:nDim
curDimVarName = genvarname(sprintf('dimData_%d',curDim));
eval([curDimVarName,'= m{1}(curDim,:);']);
end
% clusterColors will hold the colors for the total number of clusters
% on each iteration:
clusterColors = colorMatrix;
% Draw cluster information for first iteration:
for curColumn=1:nDim
for curLine=curColumn+1:nDim
% Big subplot data:
if curColumn == bigXDim && curLine == bigYDim
curAxes = handles(bigSubSize,bigSubSize);
curScatter = scatter(curAxes,data(curColumn,:),...
data(curLine,:),16,'filled');
set(curScatter,'CDataSource','scatterColors');
% Draw cluster centers
curColumnVarName = genvarname(sprintf('dimData_%d',curColumn));
curLineVarName = genvarname(sprintf('dimData_%d',curLine));
eval(['curScatter=scatter(curAxes,' curColumnVarName ',' ...
curLineVarName ',100,colorMatrix,''^'',''filled'');']);
set(curScatter,'XDataSource',curColumnVarName,'YDataSource',...
curLineVarName,'CDataSource','clusterColors')
end
% Small subplots data:
curAxes = handles(curLine,curColumn);
% Draw data:
curScatter = scatter(curAxes,data(curColumn,:),...
data(curLine,:),16,'filled');
set(curScatter,'CDataSource','scatterColors');
% Draw cluster centers
curColumnVarName = genvarname(sprintf('dimData_%d',curColumn));
curLineVarName = genvarname(sprintf('dimData_%d',curLine));
eval(['curScatter=scatter(curAxes,' curColumnVarName ',' ...
curLineVarName ',100,colorMatrix,''^'',''filled'');']);
set(curScatter,'XDataSource',curColumnVarName,'YDataSource',...
curLineVarName,'CDataSource','clusterColors');
if curLine==nDim
xlabel(curAxes,dimLabels{curColumn});
set(curAxes,'XTick',xlim(curAxes));
end
if curColumn==1
ylabel(curAxes,dimLabels{curLine});
set(curAxes,'YTick',ylim(curAxes));
end
end
end
refreshdata(figH,'caller');
% Preallocate gif frame. From Amro's tutorial here:
% https://stackoverflow.com/a/11054155/1162884
f = getframe(figH);
[f,map] = rgb2ind(f.cdata, 256, 'nodither');
mov = repmat(f, [1 1 1 nIters+4]);
% Add one frame at start conditions:
curFrame = 1;
% Add three frames without movement at start conditions
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
for curIter = 1:nIters
curFrame = curFrame+1;
% Change label text
set(annH,'String',sprintf('Iteration %d',curIter));
% Update cluster point colors
scatterColors = colorMatrix(label{curIter+1},:);
% Update cluster centers:
for curDim=1:nDim
curDimVarName = genvarname(sprintf('dimData_%d',curDim));
eval([curDimVarName,'= m{curIter+1}(curDim,:);']);
end
% Update cluster colors:
nClusterIter = size(m{curIter+1},2);
clusterColors = colorMatrix(1:nClusterIter,:);
% Update graphics:
refreshdata(figH,'caller');
% Update cluster colors:
if nClusterIter~=size(m{curIter},2) % If number of cluster
% of current iteration differs from previous iteration (or start
% conditions in case we are at first iteration) we redraw colors:
pcolor([1:nClusterIter+1;1:nClusterIter+1])
% image(reshape(colorMatrix,[1 size(colorMatrix)])); % Used image to
% check if the upcomming buggy behaviour would be fixed. I was not
% lucky, though...
colormap(pColorAxes,clusterColors);
% Change XTick positions to its center:
set(pColorAxes,'XTick',.5:1:nClusterIter+.5);
set(pColorAxes,'YTick',[]);
% Change its label to cluster number:
set(pColorAxes,'XTickLabel',[nClusterIter 1:nClusterIter-1]);
xlabel(pColorAxes,'Clusters Colors','FontSize',plotOpts.FontSize);
end
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
end
set(annH,'String','Convergence Conditions');
for curFrame = nIters+1:nIters+3
% Add three frames without movement at start conditions
f = getframe(figH);
mov(:,:,1,curFrame) = rgb2ind(f.cdata, map, 'nodither');
end
imwrite(mov, map, gifName, 'DelayTime',.5, 'LoopCount',inf)
varargout = cell(1,nargout);
if nargout > 0
varargout{1} = label;
if nargout > 1
varargout{2} = m;
if nargout > 2
varargout{3} = figH;
if nargout > 3
varargout{4} = handles;
end
end
end
end
end
function [leftPos,botPos,subplotWidth,subplotHeight] = ...
setCustomPlotArea(handles,plotOpts,horSpace,vertSpace)
%
% -> handles: axes handles
%
% -> plotOpts: struct holding the following fields:
%
% o leftBase: the percentage distance from the left
%
% o rightBase: the percentage distance from the right
%
% o bottomBase: the percentage distance from the bottom
%
% o topBase: the percentage distance from the top
%
% o widthUsableArea: Total width occupied by axes
%
% o heigthUsableArea: Total heigth occupied by axes
%
% -> horSpace: the axes units size (integers only) that current axes
% should occupy in the horizontal (considering that other occupied
% axes handles are empty)
%
% -> vertSpace: the axes units size (integers only) that current axes
% should occupy in the vertical (considering that other occupied
% axes handles are empty)
%
nHorSubPlot = size(handles,1);
nVertSubPlot = size(handles,2);
if nargin < 4
horSpace(nHorSubPlot,nVertSubPlot) = 0;
horSpace = horSpace+1;
if nargin < 3
vertSpace(nHorSubPlot,nVertSubPlot) = 0;
vertSpace = vertSpace+1;
end
end
subplotWidth = plotOpts.widthUsableArea/nHorSubPlot;
subplotHeight = plotOpts.heigthUsableArea/nVertSubPlot;
totalWidth = (1-plotOpts.rightBase) - plotOpts.leftBase;
totalHeight = (1-plotOpts.topBase) - plotOpts.bottomBase;
gapHeigthSpace = (totalHeight - ...
plotOpts.heigthUsableArea)/(nVertSubPlot);
gapWidthSpace = (totalWidth - ...
plotOpts.widthUsableArea)/(nHorSubPlot);
botPos(nVertSubPlot) = plotOpts.bottomBase + gapWidthSpace/2;
leftPos(1) = plotOpts.leftBase + gapHeigthSpace/2;
botPos(nVertSubPlot-1:-1:1) = botPos(nVertSubPlot) + (subplotHeight +...
gapHeigthSpace)*(1:nVertSubPlot-1);
leftPos(2:nHorSubPlot) = leftPos(1) + (subplotWidth +...
gapWidthSpace)*(1:nHorSubPlot-1);
for curLine=1:nHorSubPlot
for curColumn=1:nVertSubPlot
if handles(curLine,curColumn)
set(handles(curLine,curColumn),'Position',[leftPos(curColumn)...
botPos(curLine) horSpace(curLine,curColumn)*subplotWidth ...
vertSpace(curLine,curColumn)*subplotHeight]);
end
end
end
end
function [handles,horSpace,vertSpace] = ...
createAxesGrid(nLines,nColumns,plotOpts,dimLabels)
handles = zeros(nLines,nColumns);
% Those hold the axes size units:
horSpace(nLines,nColumns) = 0;
vertSpace(nLines,nColumns) = 0;
for curColumn=1:nColumns
for curLine=curColumn+1:nLines
handles(curLine,curColumn) = subplot(nLines,...
nColumns,curColumn+(curLine-1)*nColumns);
horSpace(curLine,curColumn) = 1;
vertSpace(curLine,curColumn) = 1;
curAxes = handles(curLine,curColumn);
if feature('UseHG2')
colormap(handle(curAxes),colorMatrix);
end
set(curAxes,'NextPlot','add',...
'FontSize',plotOpts.FontSize,'box','on');
if curLine==nLines
xlabel(curAxes,dimLabels{curColumn});
else
set(curAxes,'XTick',[]);
end
if curColumn==1
ylabel(curAxes,dimLabels{curLine});
else
set(curAxes,'YTick',[]);
end
end
end
end
Example
Here is an example using 5 dimensions, using the code:
center1 = [1; 0; 0; 0; 0];
center2 = [0; 1; 0; 0; 0];
center3 = [0; 0; 1; 0; 0];
center4 = [0; 0; 0; 1; 0];
center5 = [0; 0; 0; 0; 1];
center6 = [0; 0; 0; 0; 1.5];
center7 = [0; 0; 0; 1.5; 1];
data = [...
bsxfun(#plus,center1,.5*rand(5,20)) ...
bsxfun(#plus,center2,.5*rand(5,20)) ...
bsxfun(#plus,center3,.5*rand(5,20)) ...
bsxfun(#plus,center4,.5*rand(5,20)) ...
bsxfun(#plus,center5,.5*rand(5,20)) ...
bsxfun(#plus,center6,.2*rand(5,20)) ...
bsxfun(#plus,center7,.2*rand(5,20)) ...
];
[label,m,figH,handles]=kmeans_test(data,20);