Extract Value from nested options - scala

What is the most concise way to get 10 out of Some(Some(Some(Some(10))))?
without resorting to some external library like Scalaz.

import scala.language.higherKinds
case class Flattener[W[_], WW, T](fn : WW => W[T])
implicit def optionRecFlattenFn[WW, T](
implicit f : Flattener[Option, WW, T] = Flattener((ww: WW) => Option(ww))
) = Flattener((ww : Option[WW]) => ww.flatMap(f.fn))
def optionRecursiveFlatten[WW, T](www : Option[WW])(
implicit f : Flattener[Option, Option[WW], T]
) = f.fn(www)
val nestedOption = Option(Option(Option(Option(10))))
// Some(Some(Some(Some(10))))
val flatOption = optionRecursiveFlatten(nestedOption)
// Some(10)
val evenMoreNestedOption = Option(Option(Option(Option(Option(Option(10))))))
// Some(Some(Some(Some(Some(Some(10))))))
val flatOption2 = optionRecursiveFlatten(evenMoreNestedOption)
// Some(10)

In case you don't know the nesting level in advance, this will work for any level:
def unwrapRec(o: Option[Any]) : Any = o match {
case Some(inner # Some(_)) => unwrapRec(inner)
case Some(x) => x
case _ => ???
}
However, please note that an Any is returned. You can change it to whatever type you like and adapt the pattern match accordingly but I think you will have to pass in an Option[Any]. So it's not typesafe at this point.

You can use flatten on nested Option[Option[A]] repeatedly:
scala> val a = Some(Some(Some(Some(10))))
a: Some[Some[Some[Some[Int]]]] = Some(Some(Some(Some(10))))
scala> a.flatten.flatten.flatten.get
res0: Int = 10
I do not think there is any generic and type-safe way to extract A from T[A] := Option[T[A]] | A.
Edit: This method can dynamically get the contents, returns either the innermost value, or None:
def unwrap(x: Any): Any = x match {
case Some(v) => unwrap(v)
case v => v
}
scala> unwrap(Some(Some(Some(Some(10)))))
res1: Any = 10
scala> unwrap(Some(None))
res2: Any = None
It has unfortunately too broad type: Any => Any.

Related

Efficient and/or idiomatic way to turn Seq[Either[String, Int]] to (Seq[String], Seq[Int])

Slightly simplifying, my problem comes from a list of strings input that I want to parse with a function parse returning Either[String,Int].
Then list.map(parse) returns a list of Eithers. The next step in the program is to format an error message summing up all the errors or passing on the list of parsed integers.
Lets call the solution I'm looking for partitionEithers.
Calling
partitionEithers(List(Left("foo"), Right(1), Left("bar")))
Would give
(List("foo", "bar"),List(1))
Finding something like this in the standard library would be best. Failing that some kind of clean, idiomatic and efficient solution would be best. Also some kind of efficient utility function I could just paste into my projects would be ok.
I was very confused between these 3 earlier questions. As far as I can tell, neither of those questions matches my case, but some answers there seem to contain valid answers to this question.
Scala collections offer a partition function:
val eithers: List[Either[String, Int]] = List(Left("foo"), Right(1), Left("bar"))
eithers.partition(_.isLeft) match {
case (leftList, rightList) =>
(leftList.map(_.left.get), rightList.map(_.right.get))
}
=> res0: (List[String], List[Int]) = (List(foo, bar),List(1))
UPDATE
If you want to wrap it in a (maybe even somewhat type safer) generic function:
def partitionEither[Left : ClassTag, Right : ClassTag](in: List[Either[Left, Right]]): (List[Left], List[Right]) =
in.partition(_.isLeft) match {
case (leftList, rightList) =>
(leftList.collect { case Left(l: Left) => l }, rightList.collect { case Right(r: Right) => r })
}
You could use separate from MonadPlus (scalaz) or MonadCombine (cats) :
import scala.util.{Either, Left, Right}
import scalaz.std.list._
import scalaz.std.either._
import scalaz.syntax.monadPlus._
val l: List[Either[String, Int]] = List(Right(1), Left("error"), Right(2))
l.separate
// (List[String], List[Int]) = (List(error),List(1, 2))
I don't really get the amount of contortions of the other answers. So here is a one liner:
scala> val es:List[Either[Int,String]] =
List(Left(1),Left(2),Right("A"),Right("B"),Left(3),Right("C"))
es: List[Either[Int,String]] = List(Left(1), Left(2), Right(A), Right(B), Left(3), Right(C))
scala> es.foldRight( (List[Int](), List[String]()) ) {
case ( e, (ls, rs) ) => e.fold( l => ( l :: ls, rs), r => ( ls, r :: rs ) )
}
res5: (List[Int], List[String]) = (List(1, 2, 3),List(A, B, C))
Here is an imperative implementation mimicking the style of Scala collection internals.
I wonder if there should something like this in there, since at least I run into this from time to time.
import collection._
import generic._
def partitionEithers[L, R, E, I, CL, CR]
(lrs: I)
(implicit evI: I <:< GenTraversableOnce[E],
evE: E <:< Either[L, R],
cbfl: CanBuildFrom[I, L, CL],
cbfr: CanBuildFrom[I, R, CR])
: (CL, CR) = {
val ls = cbfl()
val rs = cbfr()
ls.sizeHint(lrs.size)
rs.sizeHint(lrs.size)
lrs.foreach { e => evE(e) match {
case Left(l) => ls += l
case Right(r) => rs += r
} }
(ls.result(), rs.result())
}
partitionEithers(List(Left("foo"), Right(1), Left("bar"))) == (List("foo", "bar"), List(1))
partitionEithers(Set(Left("foo"), Right(1), Left("bar"), Right(1))) == (Set("foo", "bar"), Set(1))
You can use foldLeft.
def f(s: Seq[Either[String, Int]]): (Seq[String], Seq[Int]) = {
s.foldRight((Seq[String](), Seq[Int]())) { case (c, r) =>
c match {
case Left(le) => (le +: r._1, r._2)
case Right(ri) => (r._1 , ri +: r._2)
}
}
}
val eithers: List[Either[String, Int]] = List(Left("foo"), Right(1), Left("bar"))
scala> f(eithers)
res0: (Seq[String], Seq[Int]) = (List(foo, bar),List(1))

Apply several transformation functions to string

Suppose I have 2 methods:
def a(s: String) = s + "..."
def b(s: String) = s + ",,,"
And I want to create 3rd method which will call both methods:
def c (s: String) = a(b(s))
How I can do it in idiomatic Scala way?
I think it's better to aggregate this functions into some List and then sequentially apply them:
List(a_, b_)
I think it's better to aggregate this functions into some List and
then sequentially apply them.
You get some help by specifying an expected type:
scala> val fs: List[String => String] = List(a,b)
fs: List[String => String] = List(<function1>, <function1>)
scala> fs.foldLeft("something")((s,f) => f(s))
res0: String = something...,,,
Here is how you can combine a set of functions into one:
// a() and b() are as defined in the question
// the following is equivalent to newfunc(x) = b(a(x))
val newFunc: String => String = List( a _, b _).reduce( _ andThen _ )
You can even create a generic function to combine them:
def functionChaining[A]( functions: A => A *): A => A = functions.reduce( _ andThen _ )
or using foldLeft:
def functionChaining[A]( functions: A => A *): A => A = functions.foldLeft( (x:A) => x )( _ andThen _ )
Here is an example of how to use this on the REPL:
scala> val newFunc: String => String = functionChaining( (x:String) => x + "---", (x:String) => x * 4)
scala> newFunc("|")
res12: String = |---|---|---|---
Many answers use andThen, but that will be give you
b(a(s))
Given that you want
a(b(s))
compose is the way to go (well, that or reversing the list, but what's the point?)
def c(s: String) = List[String => String](a, b).reduce(_ compose _)(s)
// or alternatively
def c(s: String) = List(a _, b _).reduce(_ compose _)(s)
As a result
c("foo") // foo,,,...
Now, speaking of what's idiomatic, I believe that
a(b(s))
is more idiomatic and readable than
List(a _, b _).reduce(_ compose _)(s)
This clearly depends on the number of functions you're composing. If you were to have
a(b(c(d(e(f(g(h(s))))))))
then
List[String => String](a, b, c, d, e, f, g, h).reduce(_ compose _)(s)
is probably neater and more idiomatic as well.
If you really think you need to do this:
val c = a _ andThen b
// (The signature is:)
val c:(String)=>String = a _ andThen b
or, more obviously:
def d(s:String) = a _ andThen b
If chained application is preferred then the below works. Caveats - Implicit syntax is a bit ugly; This being a structural type uses reflection.
object string {
implicit def aPimp(s: String) = new {
def a = "(a- " + s + " -a)"
}
implicit def bPimp(s: String) = new {
def b = "(b- " + s + " -b)"
}
}
scala> import string._
scala> "xyz".a.b
res0: String = (b- (a- xyz -a) -b)
scala> "xyz".b.a
res1: String = (a- (b- xyz -b) -a)
In my opinion, if not for the ugly syntax, this would be idiomatic scala.

Unquote applied types in scala macros

In the scala console I can do the following without a problem :
scala> val tree = q"def f():MySuperType[(Char,Char)]"
tree: universe.DefDef = def f(): MySuperType[scala.Tuple2[Char, Char]]
scala> val q"def $f():$d" = tree
f: universe.TermName = f
d: universe.Tree = MySuperType[scala.Tuple2[Char, Char]]
scala> val tq"$a[$TheTypeThatIWant]" = d
a: universe.Tree = MySuperType
TheTypeThatIWant: universe.Tree = scala.Tuple2[Char, Char]
And I can get what I want : the content of TheTypeThatIWant
Now If I try to do that inside a quasiquote, I get a match exception and I didn't find a way to get the inner type of an applied type.
My code :
tree match {
case q"{..$body}" =>
body.foreach (_ match {
case q"def $functionName:$type = $osef" =>
val tq"$f[$typ]" = d //I want to get $typ !!
...
}
But all I get is :
exception during macro expansion:
exception during macro expansion:
scala.MatchError: MyMacro.MySuperType[(Char, Char)] (of class scala.reflect.internal.Trees$TypeTree)
at MyMacro$$anonfun$getBasicStructure$1$1.apply(MyMacro.scala:737)
at MyMacro$$anonfun$getBasicStructure$1$1.apply(MyMacro.scala:735)
at scala.collection.immutable.List.foreach(List.scala:383)
at MyMacro$.getBasicStructure$1(MyMacro.scala:735)
at MyMacro$.MyMacro_impl(MyMacro.scala:846)
How can I solve that ?
Thank you
Edit :
The problem is not only with quasiquotes, it bugs even when I work with Trees :
case Block(stats,expr) =>
stats.foreach(_ match {
case DefDef(_,_,_,_,typ,_) =>
typ match {
case AppliedTypeTree(t,args) => //doesnt go there
case TypeApply(t,args) => //doesnt go there
case x:TypeTree => //goes there but can't get any info about the applied type
case _ =>
}
})
Edit2 :
You have to do it that way :
case q"def $name:${d:TypeTree} = $b" =>
d.tpe match {
case TypeRef(x,y,z) => //z is the list of applied types, see scaladoc
case _ =>
}
Well, I guess that's because in the console, by the time you call val tq"$a[$TheTypeThatIWant]" = d , the type of d is actually known, but it's not the case in the macro.

Chaining Scalaz validation functions: Function1[A,Validation[E,B]]

I'm trying to write some code to make it easy to chain functions that return Scalaz Validation types. One method I am trying to write is analogous to Validation.flatMap (Short circuit that validation) which I will call andPipe. The other is analogous to |#| on ApplicativeBuilder (accumulating errors) except it only returns the final Success type, which I will call andPass
Suppose I have functions:
def allDigits: (String) => ValidationNEL[String, String]
def maxSizeOfTen: (String) => ValidationNEL[String, String]
def toInt: (String) => ValidationNEL[String, Int]
As an example, I would like to first pass the input String to both allDigits and maxSizeOf10. If there are failures, it should short circuit by not calling the toInt function and return either or both failures that occurred. If Successful, I would like to pass the Success value to the toInt function. From there, it would either Succeed with the output value being an Int, or it would fail returning only the validation failure from toInt.
def intInput: (String) => ValidationNEL[String,Int] = (allDigits andPass maxSizeOfTen) andPipe toInt
Is there a way to do this without my add-on implementation below?
Here is my Implementation:
trait ValidationFuncPimp[E,A,B] {
val f: (A) => Validation[E, B]
/** If this validation passes, pass to f2, otherwise fail without accumulating. */
def andPipe[C](f2: (B) => Validation[E,C]): (A) => Validation[E,C] = (a: A) => {
f(a) match {
case Success(x) => f2(x)
case Failure(x) => Failure(x)
}
}
/** Run this validation and the other validation, Success only if both are successful. Fail accumulating errors. */
def andPass[D](f2: (A) => Validation[E,D])(implicit S: Semigroup[E]): (A) => Validation[E,D] = (a:A) => {
(f(a), f2(a)) match {
case (Success(x), Success(y)) => Success(y)
case (Failure(x), Success(y)) => Failure(x)
case (Success(x), Failure(y)) => Failure(y)
case (Failure(x), Failure(y)) => Failure(S.append(x, y))
}
}
}
implicit def toValidationFuncPimp[E,A,B](valFunc : (A) => Validation[E,B]): ValidationFuncPimp[E,A,B] = {
new ValidationFuncPimp[E,A,B] {
val f = valFunc
}
}
I'm not claiming that this answer is necessarily any better than drstevens's, but it takes a slightly different approach and wouldn't fit in a comment there.
First for our validation methods (note that I've changed the type of toInt a bit, for reasons I'll explain below):
import scalaz._, Scalaz._
def allDigits: (String) => ValidationNEL[String, String] =
s => if (s.forall(_.isDigit)) s.successNel else "Not all digits".failNel
def maxSizeOfTen: (String) => ValidationNEL[String, String] =
s => if (s.size <= 10) s.successNel else "Too big".failNel
def toInt(s: String) = try(s.toInt.right) catch {
case _: NumberFormatException => NonEmptyList("Still not an integer").left
}
I'll define a type alias for the sake of convenience:
type ErrorsOr[+A] = NonEmptyList[String] \/ A
Now we've just got a couple of Kleisli arrows:
val validator = Kleisli[ErrorsOr, String, String](
allDigits.flatMap(x => maxSizeOfTen.map(x *> _)) andThen (_.disjunction)
)
val integerizer = Kleisli[ErrorsOr, String, Int](toInt)
Which we can compose:
val together = validator >>> integerizer
And use like this:
scala> together("aaa")
res0: ErrorsOr[Int] = -\/(NonEmptyList(Not all digits))
scala> together("12345678900")
res1: ErrorsOr[Int] = -\/(NonEmptyList(Too big))
scala> together("12345678900a")
res2: ErrorsOr[Int] = -\/(NonEmptyList(Not all digits, Too big))
scala> together("123456789")
res3: ErrorsOr[Int] = \/-(123456789)
Using flatMap on something that isn't monadic makes me a little uncomfortable, and combining our two ValidationNEL methods into a Kleisli arrow in the \/ monad—which also serves as an appropriate model for our string-to-integer conversion—feels a little cleaner to me.
This is relatively concise with little "added code". It is still sort of wonky though because it ignores the successful result of applying allDigits.
scala> val validated = for {
| x <- allDigits
| y <- maxSizeOfTen
| } yield x *> y
validated: String => scalaz.Validation[scalaz.NonEmptyList[String],String] = <function1>
scala> val validatedToInt = (str: String) => validated(str) flatMap(toInt)
validatedToInt: String => scalaz.Validation[scalaz.NonEmptyList[String],Int] = <function1>
scala> validatedToInt("10")
res25: scalaz.Validation[scalaz.NonEmptyList[String],Int] = Success(10)
Alternatively you could keep both of the outputs of allDigits and maxSizeOfTen.
val validated2 = for {
x <- allDigits
y <- maxSizeOfTen
} yield x <|*|> y
I'm curious if someone else could come up with a better way to combine these. It's not really composition...
val validatedToInt = (str: String) => validated2(str) flatMap(_ => toInt(str))
Both validated and validated2 accumulate failures as shown below:
scala> def allDigits: (String) => ValidationNEL[String, String] = _ => failure(NonEmptyList("All Digits Fail"))
allDigits: String => scalaz.Scalaz.ValidationNEL[String,String]
scala> def maxSizeOfTen: (String) => ValidationNEL[String, String] = _ => failure(NonEmptyList("max > 10"))
maxSizeOfTen: String => scalaz.Scalaz.ValidationNEL[String,String]
scala> val validated = for {
| x <- allDigits
| y <- maxSizeOfTen
| } yield x *> y
validated: String => scalaz.Validation[scalaz.NonEmptyList[String],String] = <function1>
scala> val validated2 = for {
| x <- allDigits
| y <- maxSizeOfTen
| } yield x <|*|> y
validated2: String => scalaz.Validation[scalaz.NonEmptyList[String],(String, String)] = <function1>
scala> validated("ten")
res1: scalaz.Validation[scalaz.NonEmptyList[String],String] = Failure(NonEmptyList(All Digits Fail, max > 10))
scala> validated2("ten")
res3: scalaz.Validation[scalaz.NonEmptyList[String],(String, String)] = Failure(NonEmptyList(All Digits Fail, max > 10))
Use ApplicativeBuilder with the first two, so that the errors accumulate,
then flatMap toInt, so toInt only gets called if the first two succeed.
val validInt: String => ValidationNEL[String, Int] =
for {
validStr <- (allDigits |#| maxSizeOfTen)((x,_) => x);
i <- toInt
} yield(i)

Using lazy evaluation functions in varargs

What is wrong is the following method?
def someMethod(funcs: => Option[String]*) = {
...
}
That actually "works" under 2.7.7 if you add parens:
scala> def someMethod(funcs: => (Option[String]*)) = funcs
someMethod: (=> Option[String]*)Option[String]*
except it doesn't actually work at runtime:
scala> someMethod(Some("Fish"),None)
scala.MatchError: Some(Fish)
at scala.runtime.ScalaRunTime$.boxArray(ScalaRunTime.scala:136)
at .someMethod(<console>:4)
at .<init>(<console>:6)
at .<clinit>(<console>) ...
In 2.8 it refuses to let you specify X* as the output of any function or by-name parameter, even though you can specify it as an input (this is r21230, post-Beta 1):
scala> var f: (Option[Int]*) => Int = _
f: (Option[Int]*) => Int = null
scala> var f: (Option[Int]*) => (Option[Int]*) = _
<console>:1: error: no * parameter type allowed here
var f: (Option[Int]*) => (Option[Int]*) = _
But if you try to convert from a method, it works:
scala> def m(oi: Option[Int]*) = oi
m: (oi: Option[Int]*)Option[Int]*
scala> var f = (m _)
f: (Option[Int]*) => Option[Int]* = <function1>
scala> f(Some(1),None)
res0: Option[Int]* = WrappedArray(Some(1), None)
So it's not entirely consistent.
In any case, you can possibly achieve what you want by passing in an Array and then sending that array to something that takes repeated arguments:
scala> def aMethod(os: Option[String]*) { os.foreach(println) }
aMethod: (os: Option[String]*)Unit
scala> def someMethod(funcs: => Array[Option[String]]) { aMethod(funcs:_*) }
someMethod: (funcs: => Array[Option[String]])Unit
scala> someMethod(Array(Some("Hello"),Some("there"),None))
Some(Hello)
Some(there)
None
If you really want to (easily) pass a bunch of lazily evaluated arguments, then you need a little bit of infrastructure that as far as I know doesn't nicely exist in the library (this is code for 2.8; view it as inspiration for a similar strategy in 2.7):
class Lazy[+T](t: () => T, lt: Lazy[T]) {
val params: List[() => T] = (if (lt eq null) Nil else t :: lt.params)
def ~[S >: T](s: => S) = new Lazy[S](s _,this)
}
object Lz extends Lazy[Nothing](null,null) {
implicit def lazy2params[T : Manifest](lz: Lazy[T]) = lz.params.reverse.toArray
}
Now you can easily create a bunch of parameters that are lazily evaluated:
scala> import Lz._ // To get implicit def
import Lz._
scala> def lazyAdder(ff: Array[()=>Int]) = {
| println("I'm adding now!");
| (0 /: ff){(n,f) => n+f()}
| }
lazyAdder: (ff: Array[() => Int])Int
scala> def yelp = { println("You evaluated me!"); 5 }
yelp: Int
scala> val a = 3
a: Int = 3
scala> var b = 7
b: Int = 7
scala> lazyAdder( Lz ~ yelp ~ (a+b) )
I'm adding now!
You evaluated me!
res0: Int = 15
scala> val plist = Lz ~ yelp ~ (a+b)
plist: Lazy[Int] = Lazy#1ee1775
scala> b = 1
b: Int = 1
scala> lazyAdder(plist)
I'm adding now!
You evaluated me!
res1: Int = 9
Evidently repeated arguments are not available for by-name parameters.