SICP - Multiplication through addition - lisp

I am using the book SICP and attempting to solve this exercise:
1.2.4 Exponentiation
Exercise 1.18. Using the results of exercises 1.16 and 1.17, devise
a procedure that generates an iterative process for multiplying two
integers in terms of adding, doubling, and halving and uses a
logarithmic number of steps
I am trying to solve this with the following code:
(define (double x)
(+ x x))
(define (halve x)
(floor (/ x 2)))
(define (* a b)
(define (iter count accumulate)
(cond ((= count 1) accumulate)
((even? a) (iter (halve count) (+ accumulate (double b))))
(else empty)))
(iter a 0))
As you might see, I am trying to deal with even numbers first.
I am using the SICP wiki as my solutions-guide. They suggest some tests to see if the code works:
(* 2 4)
(* 4 0)
What I do not get is that my code passes on these two first tests, dealing only with even numbers.
However, when I try some big numbers which are multiples of two, the code fails. I checked the result using Python. For instance,
(IN PYTHON)
2**100
>> 1267650600228229401496703205376
2**98
>> 316912650057057350374175801344
a = 2**100
b = 2**98
a*b
>> 401734511064747568885490523085290650630550748445698208825344
When I use my function inside Dr. Racket with these values I get a different result:
(* 1267650600228229401496703205376 316912650057057350374175801344)
My result is: 63382530011411470074835160268800, which is wrong, as Python built-in functions suggest.
Why this is happening?

The recursive step seems wrong, and what's that empty doing there? also, what happens if b is negative? this solution should work:
(define (mul a b)
(define (iter a b acc)
(cond ((zero? b) acc)
((even? b) (iter (double a) (halve b) acc))
(else (iter a (- b 1) (+ a acc)))))
(if (< b 0)
(- (iter a (- b) 0))
(iter a b 0)))
For example:
(mul 1267650600228229401496703205376 316912650057057350374175801344)
=> 401734511064747568885490523085290650630550748445698208825344

Related

Can anyone help me with a recursive function in racket?

I am writing a recursive function. But the question requires you not to use the exponential function. Can anyone show me how to get larger powers by multiplying smaller powers by a?
Input a=2 n=4. Then get[2, 4, 8, 16]
Input a=3 n=4. Then get[3 9 27 81].
I was trying to multiply a by a each time, so when I input 2 and 4. I get [2 4 16 256]. So what should I do?
Here is what I have written:
(define (input a n)
(if (= n 0)
'()
(append (cdr (list [* a a] a))
(let ((a (* a a)))
(input a (- n 1))))))
You are approaching the problem wrong, you really need two recursive functions (one to build the list and one to build each element). I am assuming you are allowed to use local, but if you aren't you could move that into a helper function.
(define (build-sqr-list a n)
(local [(define (sqr-recurse a n)
(if (= n 0)
1
(* a (sqr-recurse a (sub1 n)))))]
(if (= n 0)
'()
(cons (sqr-recurse a n) (build-sqr-list a (sub1 n))))))

Racket - arguments for procedure how to get all

I need to write procedure for calculation of weighted sum in follow functionality:
((weighted-sum 1) 5)
5
((weighted-sum 1/2 1/2) 3 1)
2
etc..
So far I did only how to get parameters for procedure:
(define (weighted-sum x . xn) (cons x xs))
(weighted-sum 2 3)
> '(2 3)
How to get ((weighted-sum 2 3) X X) parameters?
Thank you.
Your question doesn't have one easy answer. It sounds like you're supposed to write a function that accepts a sequence of weights, and returns a function that accepts a sequence of weights, and sums the products of the weights and the sums (by the way, stating this yourself would have been really helpful...).
1) Is this your design, or someone else's? I would not design this function this way.
2) You can write functions that return functions in a bunch of different ways. E.g.:
;; these all do the same thing.
;; they all have the type (number -> (number -> number))
(define a (lambda (x) (lambda (y) (+ x y))))
(define ((a x) y) (+ x y))
(define (a x)
(define (b y) (+ x y))
b)
So weighted-sum takes a variable number of values as parameters (let's call them ws) , and returns a new procedures that, in its turn, takes a variable number of parameters (vs) and does the calculation.
In racket, the for/fold construct comes in handy:
(define (weighted-sum . ws)
(lambda vs
(for/fold ((res 0)) ((i (in-list ws))
(j (in-list vs)))
(+ res (* i j)))))
or even
(define ((weighted-sum . ws) . vs)
(for/fold ((res 0)) ((i (in-list ws))
(j (in-list vs)))
(+ res (* i j))))
Alternatively, using a more classic foldl returning a named inner procedure:
(define (weighted-sum . ws)
(define (sub . vs)
(foldl
(lambda (i j res) (+ res (* i j)))
0
ws
vs))
sub)
For any of those:
> ((weighted-sum 1) 5)
5
> ((weighted-sum 1/2 1/2) 3 1)
2

Racket - Transform a natural number to a specific base [duplicate]

I want to show the result of my function as a list not as a number.
My result is:
(define lst (list ))
(define (num->base n b)
(if (zero? n)
(append lst (list 0))
(append lst (list (+ (* 10 (num->base (quotient n b) b)) (modulo n b))))))
The next error appears:
expected: number?
given: '(0)
argument position: 2nd
other arguments...:
10
I think you have to rethink this problem. Appending results to a global variable is definitely not the way to go, let's try a different approach via tail recursion:
(define (num->base n b)
(let loop ((n n) (acc '()))
(if (< n b)
(cons n acc)
(loop (quotient n b)
(cons (modulo n b) acc)))))
It works as expected:
(num->base 12345 10)
=> '(1 2 3 4 5)

How do I find the index of an element in a list in Racket?

This is trivial implement of course, but I feel there is certainly something built in to Racket that does this. Am I correct in that intuition, and if so, what is the function?
Strangely, there isn't a built-in procedure in Racket for finding the 0-based index of an element in a list (the opposite procedure does exist, it's called list-ref). However, it's not hard to implement efficiently:
(define (index-of lst ele)
(let loop ((lst lst)
(idx 0))
(cond ((empty? lst) #f)
((equal? (first lst) ele) idx)
(else (loop (rest lst) (add1 idx))))))
But there is a similar procedure in srfi/1, it's called list-index and you can get the desired effect by passing the right parameters:
(require srfi/1)
(list-index (curry equal? 3) '(1 2 3 4 5))
=> 2
(list-index (curry equal? 6) '(1 2 3 4 5))
=> #f
UPDATE
As of Racket 6.7, index-of is now part of the standard library. Enjoy!
Here's a very simple implementation:
(define (index-of l x)
(for/or ([y l] [i (in-naturals)] #:when (equal? x y)) i))
And yes, something like this should be added to the standard library, but it's just a little tricky to do so nobody got there yet.
Note, however, that it's a feature that is very rarely useful -- since lists are usually taken as a sequence that is deconstructed using only the first/rest idiom rather than directly accessing elements. More than that, if you have a use for it and you're a newbie, then my first guess will be that you're misusing lists. Given that, the addition of such a function is likely to trip such newbies by making it more accessible. (But it will still be added, eventually.)
One can also use a built-in function 'member' which gives a sublist starting with the required item or #f if item does not exist in the list. Following compares the lengths of original list and the sublist returned by member:
(define (indexof n l)
(define sl (member n l))
(if sl
(- (length l)
(length sl))
#f))
For many situations, one may want indexes of all occurrences of item in the list. One can get a list of all indexes as follows:
(define (indexes_of1 x l)
(let loop ((l l)
(ol '())
(idx 0))
(cond
[(empty? l) (reverse ol)]
[(equal? (first l) x)
(loop (rest l)
(cons idx ol)
(add1 idx))]
[else
(loop (rest l)
ol
(add1 idx))])))
For/list can also be used for this:
(define (indexes_of2 x l)
(for/list ((i l)
(n (in-naturals))
#:when (equal? i x))
n))
Testing:
(indexes_of1 'a '(a b c a d e a f g))
(indexes_of2 'a '(a b c a d e a f g))
Output:
'(0 3 6)
'(0 3 6)

How to calculate the sum of a digits of a number in Scheme?

I want to calculate the sum of digits of a number in Scheme. It should work like this:
>(sum-of-digits 123)
6
My idea is to transform the number 123 to string "123" and then transform it to a list '(1 2 3) and then use (apply + '(1 2 3)) to get 6.
but it's unfortunately not working like I imagined.
>(string->list(number->string 123))
'(#\1 #\2 #\3)
Apparently '(#\1 #\2 #\3) is not same as '(1 2 3)... because I'm using language racket under DrRacket, so I can not use the function like char->digit.
Can anyone help me fix this?
An alternative method would be to loop over the digits by using modulo. I'm not as used to scheme syntax, but thanks to #bearzk translating my Lisp here's a function that works for non-negative integers (and with a little work could encompass decimals and negative values):
(define (sum-of-digits x)
(if (= x 0) 0
(+ (modulo x 10)
(sum-of-digits (/ (- x (modulo x 10)) 10)))))
Something like this can do your digits thing arithmetically rather than string style:
(define (digits n)
(if (zero? n)
'()
(cons (remainder n 10) (digits2 (quotient n 10))))
Anyway, idk if its what you're doing but this question makes me think Project Euler. And if so, you're going to appreciate both of these functions in future problems.
Above is the hard part, this is the rest:
(foldr + (digits 12345) 0)
OR
(apply + (digits 1234))
EDIT - I got rid of intLength above, but in case you still want it.
(define (intLength x)
(define (intLengthP x c)
(if (zero? x)
c
(intLengthP (quotient x 10) (+ c 1))
)
)
(intLengthP x 0))
Those #\1, #\2 things are characters. I hate to RTFM you, but the Racket docs are really good here. If you highlight string->list in DrRacket and hit F1, you should get a browser window with a bunch of useful information.
So as not to keep you in the dark; I think I'd probably use the "string" function as the missing step in your solution:
(map string (list #\a #\b))
... produces
(list "a" "b")
A better idea would be to actually find the digits and sum them. 34%10 gives 4 and 3%10 gives 3. Sum is 3+4.
Here's an algorithm in F# (I'm sorry, I don't know Scheme):
let rec sumOfDigits n =
if n<10 then n
else (n%10) + sumOfDigits (n/10)
This works, it builds on your initial string->list solution, just does a conversion on the list of characters
(apply + (map (lambda (d) (- (char->integer d) (char->integer #\0)))
(string->list (number->string 123))))
The conversion function could factored out to make it a little more clear:
(define (digit->integer d)
(- (char->integer d) (char->integer #\0)))
(apply + (map digit->integer (string->list (number->string 123))))
(define (sum-of-digits num)
(if (< num 10)
num
(+ (remainder num 10) (sum-of-digits (/ (- num (remainder num 10)) 10)))))
recursive process.. terminates at n < 10 where sum-of-digits returns the input num itself.