I have the following case classes defined and i would like to print out ClientData in xml format using xstream.
case class Address(addressLine1: String,
addressLine2: String,
city: String,
provinceCode: String,
country: String,
addressTypeDesc: String) extends Serializable{
}
case class ClientData(title: String,
firstName: String,
lastName: String,
addrList:Option[List[Address]]) extends Serializable{
}
object ex1{
def main(args: Array[String]){
...
...
...
// In below, x is Try[ClientData]
val xstream = new XStream(new DomDriver)
newClientRecord.foreach(x=> if (x.isSuccess) println(xstream.toXML(x.get)))
}
}
And when the program execute the line to print each ClientData in xml format, I am getting the runtime error below. Please help.
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:911)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1.apply(RDD.scala:910)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.foreach(RDD.scala:910)
at lab9$.main(lab9.scala:63)
at lab9.main(lab9.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:147)
Caused by: java.io.NotSerializableException: com.thoughtworks.xstream.XStream
Serialization stack:
- object not serializable (class: com.thoughtworks.xstream.XStream, value: com.thoughtworks.xstream.XStream#51e94b7d)
- field (class: lab9$$anonfun$main$1, name: xstream$1, type: class com.thoughtworks.xstream.XStream)
- object (class lab9$$anonfun$main$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
... 16 more
It isn't XStream which complains, it's Spark. You need to define xstream variable inside the task:
newClientRecord.foreach { x=>
if (x.isSuccess) {
val xstream = new XStream(new DomDriver)
println(xstream.toXML(x.get))
}
}
if XStream is sufficiently cheap to create;
newClientRecord.foreachPartition { xs =>
val xstream = new XStream(new DomDriver)
xs.foreach { x =>
if (x.isSuccess) {
println(xstream.toXML(x.get))
}
}
}
otherwise.
Related
I am receiving a task not serializable exception in spark when attempting to implement an Apache pulsar Sink in spark structured streaming.
I have already attempted to extrapolate the PulsarConfig to a separate class and call this within the .foreachPartition lambda function which I normally do for JDBC connections and other systems I integrate into spark structured streaming like shown below:
PulsarSink Class
class PulsarSink(
sqlContext: SQLContext,
parameters: Map[String, String],
partitionColumns: Seq[String],
outputMode: OutputMode) extends Sink{
override def addBatch(batchId: Long, data: DataFrame): Unit = {
data.toJSON.foreachPartition( partition => {
val pulsarConfig = new PulsarConfig(parameters).client
val producer = pulsarConfig.newProducer(Schema.STRING)
.topic(parameters.get("topic").get)
.compressionType(CompressionType.LZ4)
.sendTimeout(0, TimeUnit.SECONDS)
.create
partition.foreach(rec => producer.send(rec))
producer.flush()
})
}
PulsarConfig Class
class PulsarConfig(parameters: Map[String, String]) {
def client(): PulsarClient = {
import scala.collection.JavaConverters._
if(!parameters.get("tlscert").isEmpty && !parameters.get("tlskey").isEmpty) {
val tlsAuthMap = Map("tlsCertFile" -> parameters.get("tlscert").get,
"tlsKeyFile" -> parameters.get("tlskey").get).asJava
val tlsAuth: Authentication = AuthenticationFactory.create(classOf[AuthenticationTls].getName, tlsAuthMap)
PulsarClient.builder
.serviceUrl(parameters.get("broker").get)
.tlsTrustCertsFilePath(parameters.get("tlscert").get)
.authentication(tlsAuth)
.enableTlsHostnameVerification(false)
.allowTlsInsecureConnection(true)
.build
}
else{
PulsarClient.builder
.serviceUrl(parameters.get("broker").get)
.enableTlsHostnameVerification(false)
.allowTlsInsecureConnection(true)
.build
}
}
}
The error message I receive is the following:
ERROR StreamExecution: Query [id = 12c715c2-2d62-4523-a37a-4555995ccb74, runId = d409c0db-7078-4654-b0ce-96e46dfb322c] terminated with error
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:340)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:330)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:156)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2294)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:925)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$1.apply(RDD.scala:924)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:924)
at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply$mcV$sp(Dataset.scala:2341)
at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2341)
at org.apache.spark.sql.Dataset$$anonfun$foreachPartition$1.apply(Dataset.scala:2341)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2828)
at org.apache.spark.sql.Dataset.foreachPartition(Dataset.scala:2340)
at org.apache.spark.datamediation.impl.sink.PulsarSink.addBatch(PulsarSink.scala:20)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply$mcV$sp(StreamExecution.scala:666)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply(StreamExecution.scala:666)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch$1.apply(StreamExecution.scala:666)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:279)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatch(StreamExecution.scala:665)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(StreamExecution.scala:306)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$apply$mcZ$sp$1.apply(StreamExecution.scala:294)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1$$anonfun$apply$mcZ$sp$1.apply(StreamExecution.scala:294)
at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:279)
at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anonfun$org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches$1.apply$mcZ$sp(StreamExecution.scala:294)
at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runBatches(StreamExecution.scala:290)
at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:206)
Caused by: java.io.NotSerializableException: org.apache.spark.datamediation.impl.sink.PulsarSink
Serialization stack:
- object not serializable (class: org.apache.spark.datamediation.impl.sink.PulsarSink, value: org.apache.spark.datamediation.impl.sink.PulsarSink#38813f43)
- field (class: org.apache.spark.datamediation.impl.sink.PulsarSink$$anonfun$addBatch$1, name: $outer, type: class org.apache.spark.datamediation.impl.sink.PulsarSink)
- object (class org.apache.spark.datamediation.impl.sink.PulsarSink$$anonfun$addBatch$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:337)
... 31 more
Values used in "foreachPartition" can be reassigned from class level to function variables:
override def addBatch(batchId: Long, data: DataFrame): Unit = {
val parametersLocal = parameters
data.toJSON.foreachPartition( partition => {
val pulsarConfig = new PulsarConfig(parametersLocal).client
I have a Breeze DenseMatrix, i find mean per row and mean of squares per row and put them in another DenseMatrix, one per column. But i get Task Not Serializable exception. I know that sc is not Serializable but i think that the exception is because i call functions in a transformation in Safe Zones.
Am i right? And how could be a possible way to be done without any functions? Any help would be great!
Code:
object MotitorDetection {
case class MonDetect() extends Serializable {
var sc: SparkContext = _
var machines: Int=0
var counters: Int=0
var GlobalVec= BDM.zeros[Double](counters, 2)
def findMean(a: BDM[Double]): BDV[Double] = {
var c = mean(a(*, ::))
c}
def toMatrix(x: BDV[Double], y: BDV[Double], C: Int): BDM[Double]={
val m = BDM.zeros[Double](C,2)
m(::, 0) := x
m(::, 1) := y
m}
def SafeZones(stream: DStream[(Int, BDM[Double])]){
stream.foreachRDD { (rdd: RDD[(Int, BDM[Double])], _) =>
if (isEmpty(rdd) == false) {
val InputVec = rdd.map(x=> (x._1, toMatrix(findMean(x._2), findMean(pow(x._2, 2)), counters)))
GlobalMeanVector(InputVec)
}}}
Exception:
org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2287)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:370)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:369)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.map(RDD.scala:369)
at ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1.apply(MotitorDetection.scala:85)
at ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1.apply(MotitorDetection.scala:82)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748) Caused by: java.io.NotSerializableException: org.apache.spark.SparkContext Serialization stack:
- object not serializable (class: org.apache.spark.SparkContext, value: org.apache.spark.SparkContext#6eee7027)
- field (class: ScalaApps.MotitorDetection$MonDetect, name: sc, type: class org.apache.spark.SparkContext)
- object (class ScalaApps.MotitorDetection$MonDetect, MonDetect())
- field (class: ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1, name: $outer, type: class ScalaApps.MotitorDetection$MonDetect)
- object (class ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1, <function2>)
- field (class: ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1$$anonfun$2, name: $outer, type: class ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1)
- object (class ScalaApps.MotitorDetection$MonDetect$$anonfun$SafeZones$1$$anonfun$2, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:295)
... 28 more
The findMean method is a method of the object MotitorDetection. The object MotitorDetection has a SparkContext on-board, which is not serializable. Thus, the task used in rdd.map is not serializable.
Move all the matrix-related functions into a separate serializable object, MatrixUtils, say:
object MatrixUtils {
def findMean(a: BDM[Double]): BDV[Double] = {
var c = mean(a(*, ::))
c
}
def toMatrix(x: BDV[Double], y: BDV[Double], C: Int): BDM[Double]={
val m = BDM.zeros[Double](C,2)
m(::, 0) := x
m(::, 1) := y
m
}
...
}
and then use only those methods from rdd.map(...):
object MotitorDetection {
val sc = ...
def SafeZones(stream: DStream[(Int, BDM[Double])]){
import MatrixUtils._
... = rdd.map( ... )
}
}
I am trying to load CSV file to solr doc, i am trying using scala. I am new to scala. For case class structure, if i pass one set of values it works fine. But if i want to want all read values from CSV, it gives an error. I am not sure how to do it in scala, any help greatly appreciated.
object BasicParseCsv {
case class Person(id: String, name: String,age: String, addr: String )
val schema = ArrayBuffer[Person]()
def main(args: Array[String]) {
val master = args(0)
val inputFile = args(1)
val outputFile = args(2)
val sc = new SparkContext(master, "BasicParseCsv", System.getenv("SPARK_HOME"))
val params = new ModifiableSolrParams
val Solr = new HttpSolrServer("http://localhost:8983/solr/person1")
//Preparing the Solr document
val doc = new SolrInputDocument()
val input = sc.textFile(inputFile)
val result = input.map{ line =>
val reader = new CSVReader(new StringReader(line));
reader.readNext();
}
def getSolrDocument(person: Person): SolrInputDocument = {
val document = new SolrInputDocument()
document.addField("id",person.id)
document.addField("name", person.name)
document.addField("age",person.age)
document.addField("addr", person.addr)
document
}
def send(persons:List[Person]){
persons.foreach(person=>Solr.add(getSolrDocument(person)))
Solr.commit()
}
val people = result.map(x => Person(x(0), x(1),x(2),x(3)))
val book1 = new Person("101","xxx","20","abcd")
send(List(book1))
people.map(person => send(List(Person(person.id, person.name, person.age,person.addr))))
System.out.println("Documents added")
}
}
people.map(person => send(List(Person(person.id, person.name, person.age,person.addr)))) ==> gives error
val book1 = new Person("101","xxx","20","abcd") ==> works fine
Update : I get below error
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2067)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at BasicParseCsv$.main(BasicParseCsv.scala:90)
at BasicParseCsv.main(BasicParseCsv.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:144)
Caused by: java.io.NotSerializableException: org.apache.http.impl.client.SystemDefaultHttpClient
Serialization stack:
- object not serializable (class: org.apache.http.impl.client.SystemDefaultHttpClient, value: org.apache.http.impl.client.SystemDefaultHttpClient#1dbd580)
- field (class: org.apache.solr.client.solrj.impl.HttpSolrServer, name: httpClient, type: interface org.apache.http.client.HttpClient)
- object (class org.apache.solr.client.solrj.impl.HttpSolrServer, org.apache.solr.client.solrj.impl.HttpSolrServer#17e0827)
- field (class: BasicParseCsv$$anonfun$main$1, name: Solr$1, type: class org.apache.solr.client.solrj.impl.HttpSolrServer)
The following code got the error of "Task not serializable"?
The error
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2101)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:370)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:369)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.map(RDD.scala:369)
at ConnTest$.main(main.scala:41)
at ConnTest.main(main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:743)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: DoWork
Serialization stack:
- object not serializable (class: DoWork, value: DoWork#655621fd)
- field (class: ConnTest$$anonfun$2, name: doWork$1, type: class DoWork)
- object (class ConnTest$$anonfun$2, )
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:46)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:100)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:295)
... 20 more
Code:
object ConnTest extends App {
override def main(args: scala.Array[String]): Unit = {
super.main(args)
val date = args(0)
val conf = new SparkConf()
val sc = new SparkContext(conf.setAppName("Test").setMaster("local[*]"))
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val jdbcSqlConn = "jdbc:sqlserver://......;"
val listJob = new ItemListJob(sqlContext, jdbcSqlConn)
val list = listJob.run(date).select("id").rdd.map(r => r(0).asInstanceOf[Int]).collect()
// It returns about 3000 rows
val doWork = new DoWork(sqlContext, jdbcSqlConn)
val processed = sc.parallelize(list).map(d => {
doWork.run(d, date)
})
}
}
class ItemList(sqlContext: org.apache.spark.sql.SQLContext, jdbcSqlConn: String) {
def run(date: LocalDate) = {
sqlContext.read.format("jdbc").options(Map(
"driver" -> "com.microsoft.sqlserver.jdbc.SQLServerDriver",
"url" -> jdbcSqlConn,
"dbtable" -> s"dbo.GetList('$date')"
)).load()
}
}
class DoWork(sqlContext: org.apache.spark.sql.SQLContext, jdbcSqlConn: String) {
def run(id: Int, date: LocalDate) = {
// ...... read the data from database for id, and create a text file
val data = sqlContext.read.format("jdbc").options(Map(
"driver" -> "com.microsoft.sqlserver.jdbc.SQLServerDriver",
"url" -> jdbcSqlConn,
"dbtable" -> s"someFunction('$id', $date)"
)).load()
// .... create a text file with content of data
(id, date)
}
}
Update:
I changed the .map() call to the following,
val processed = sc.parallelize(dealList).toDF.map(d => {
doWork.run(d(0).asInstanceOf[Int], rc)
})
Now I got the error of
Exception in thread "main" java.lang.UnsupportedOperationException: No Encoder found for java.time.LocalDate
- field (class: "java.time.LocalDate", name: "_2")
- root class: "scala.Tuple2"
at org.apache.spark.sql.catalyst.ScalaReflection$.org$apache$spark$sql$catalyst$ScalaReflection$$serializerFor(ScalaReflection.scala:602)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$9.apply(ScalaReflection.scala:596)
at org.apache.spark.sql.catalyst.ScalaReflection$$anonfun$9.apply(ScalaReflection.scala:587)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:381)
The issue is in the following closure:
val processed = sc.parallelize(list).map(d => {
doWork.run(d, date)
})
The closure in map will run in executors, so Spark needs to serialize doWork and send it to executors. DoWork must be serializable. However. I saw DoWork contains sc and sqlContext so you cannot just make DoWork implement Serializable because you cannot use them in executors.
I guess you probably want to store data into database in DoWork. If so, you can convert RDD to DataFrame and save it via jdbc method, such as:
sc.parallelize(list).toDF.write.jdbc(...)
I cannot give more suggestions since you don't provides the codes in DoWork.
I have one scala class from play-mongojack example. It works fine. However, when I tried to save it in Play ehcache, it throws NotSerializableException. How can I make this class serializable?
class BlogPost(#ObjectId #Id val id: String,
#BeanProperty #JsonProperty("date") val date: Date,
#BeanProperty #JsonProperty("title") val title: String,
#BeanProperty #JsonProperty("author") val author: String,
#BeanProperty #JsonProperty("content") val content: String) {
#ObjectId #Id #BeanProperty var blogId: String = _
#BeanProperty #JsonProperty("uploadedFile") var uploadedFile: Option[(String, String, Long)] = None
}
object BlogPost {
def apply(
date: Date,
title: String,
author: String,
content: String): BlogPost = new BlogPost(date,title,author,content)
def unapply(e: Event) =
new Some((e.messageId,
e.date,
e.title,
e.author,
e.content,
e.blogId,
e.uploadedFile) )
private lazy val db = MongoDB.collection("blogposts", classOf[BlogPost], classOf[String])
def save(blogPost: BlogPost) { db.save(blogPost) }
def findByAuthor(author: String) = db.find().is("author", author).asScala
}
Saving to cache:
var latestBlogs = List[BlogPost]()
Cache.set("latestBlogs", latestBlogs, 30)
It throws an exception:
[error] n.s.e.s.d.DiskStorageFactory - Disk Write of latestBlogs failed:
java.io.NotSerializableException: BlogPost
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183) ~[na:1.7.0_45]
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347) ~[na:1.7.0_45]
at java.util.ArrayList.writeObject(ArrayList.java:742) ~[na:1.7.0_45]
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[na:1.7.0_45]
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) ~[na:1.7.0_45]
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:1.7.0_45]
EDIT 1:
I tried to extends the object with Serializable, it doesn't work.
object BlogPost extends Serializable {}
EDIT 2:
The vitalii's comment works for me.
class BlogPost() extends scala.Serializable {}
Try to derive class BlogPost from Serializable or define it as a case class which are serializable by default.