Order full text search by exact match THEN prefixed matches - postgresql

How can I ensure my full text search results are ordered by exact matches and THEN prefixed matches?
SELECT ticker, name, ts_rank(document, to_tsquery('english', 'MAT:*')) AS rank
FROM (
SELECT *, setweight(to_tsvector('english', ticker), 'A') || setweight(to_tsvector('english', name), 'B') AS document
FROM ( VALUES
('MATI-R' , 'MATICHON PCL.NVDR')
,('MATCH-R', 'MATCHING MAXIMIZE SLN. NVDR')
,('MATV' , 'MATAV-CABLE SYS.MEDIA SPN.ADR 1:2 DEAD - DELIST.03/07/06')
,('MAT' , 'MATISSE HOLDINGS DEAD - 03/10/06')
,('MAT' , 'MATTEL')
) data (ticker,name)
) ss ORDER BY rank DESC
I tried a few of the suggestions on https://www.postgresql.org/docs/9.5/static/datatype-textsearch.html like to_tsquery('english', 'MAT:A & MAT:*B') but none seem to give me the ordering I'm looking for. The current output is
ticker | name | rank
---------+----------------------------------------------------------+----------
MATI-R | MATICHON PCL.NVDR | 1.45903
MATCH-R | MATCHING MAXIMIZE SLN. NVDR | 1.27665
MATV | MATAV-CABLE SYS.MEDIA SPN.ADR 1:2 DEAD - DELIST.03/07/06 | 1.09427
MAT | MATISSE HOLDINGS DEAD - 03/10/06 | 0.851098
MAT | MATTEL | 0.851098
when I want something more like
ticker | name | rank
---------+----------------------------------------------------------+----------
MAT | MATTEL | ??
MAT | MATISSE HOLDINGS DEAD - 03/10/06 | ??
MATCH-R | MATCHING MAXIMIZE SLN. NVDR | ??
MATI-R | MATICHON PCL.NVDR | ??
MATV | MATAV-CABLE SYS.MEDIA SPN.ADR 1:2 DEAD - DELIST.03/07/06 | ??

Use LIKE or ILIKE:
SELECT ticker, name, ts_rank(document, to_tsquery('english', 'MAT:*')) AS rank
FROM (
SELECT *, setweight(to_tsvector('english', ticker), 'A') || setweight(to_tsvector('english', name), 'B') AS document
FROM ( VALUES
('MATI-R' , 'MATICHON PCL.NVDR')
,('MATCH-R', 'MATCHING MAXIMIZE SLN. NVDR')
,('MATV' , 'MATAV-CABLE SYS.MEDIA SPN.ADR 1:2 DEAD - DELIST.03/07/06')
,('MAT' , 'MATISSE HOLDINGS DEAD - 03/10/06')
,('MAT' , 'MATTEL')
) data (ticker,name)
) ss ORDER BY name LIKE concat('%', ticker, '%') desc, rank DESC
ticker | name | rank
---------+----------------------------------------------------------+----------
MAT | MATISSE HOLDINGS DEAD - 03/10/06 | 0.851098
MAT | MATTEL | 0.851098
MATI-R | MATICHON PCL.NVDR | 1.45903
MATCH-R | MATCHING MAXIMIZE SLN. NVDR | 1.27665
MATV | MATAV-CABLE SYS.MEDIA SPN.ADR 1:2 DEAD - DELIST.03/07/06 | 1.09427
(5 rows)

Related

Efficient way to retrieve all values from a column that start with other values from the same column in PostgreSQL

For the sake of simplicity, suppose you have a table with numbers like:
| number |
----------
|123 |
|1234 |
|12345 |
|123456 |
|111 |
|1111 |
|2 |
|700 |
What would be an efficient way of retrieving the shortest numbers (call them roots or whatever) and all values derived from them, eg:
| root | derivatives |
--------------------------------
| 123 | 1234, 12345, 123456 |
| 111 | 1111 |
Numbers 2 & 700 are excluded from the list because they're unique, and thus have no derivatives.
An output as the above would be ideal, but since it's probably difficult to achieve, the next best thing would be something like below, which I can then post-process:
| root | derivative |
-----------------------
| 123 | 1234 |
| 123 | 12345 |
| 123 | 123456 |
| 111 | 1111 |
My naive initial attempt to at least identify roots (see below) has been running for 4h now with a dataset of ~500k items, but the real one I'd have to inspect consists of millions.
select number
from numbers n1
where exists(
select number
from numbers n2
where n2.number <> n1.number
and n2.number like n1.number || '_%'
);
This works if number is an integer or bigint:
select min(a.number) as root, b.number as derivative
from nums a
cross join lateral generate_series(1, 18) as gs(power)
join nums b
on b.number / (10^gs.power)::bigint = a.number
group by b.number
order by root, derivative;
EDIT: I moved a non-working query to the bottom. It fails for reasons outlined by #Morfic in the comments.
We can do a similar and simpler join using like for character types:
select min(a.number) as root, b.number as derivative
from numchar a
join numchar b on b.number like a.number||'%'
and b.number != a.number
group by b.number
order by root, derivative;
Updated fiddle.
Faulty Solution Follows
If number is a character type, then try this:
with groupings as (
select number,
case
when number like (lag(number) over (order by number))||'%' then 0
else 1
end as newgroup
from numchar
), groupnums as (
select number, sum(newgroup) over (order by number) as groupnum
from groupings
), matches as (
select min(number) over (partition by groupnum) as root,
number as derivative
from groupnums
)
select *
from matches
where root != derivative;
There should be only a single sort on groupnum in this execution since the column is your table's primary key.
db<>fiddle here

Given a row representing a path, union a total column

Say I have a table like the following table that represents a path from 1 -> 2 -> 3 -> 4 -> 5:
+------+----+--------+
| from | to | weight |
+------+----+--------+
| a | b | 1 |
| b | c | 2 |
| c | d | 1 |
| d | e | 1 |
| e | f | 3 |
+------+----+--------+
Each row knows where it came from and where it is going
I would like to union a total row that takes the starting name, ending name, and a total weight like so:
+------+----+--------+
| from | to | weight |
+------+----+--------+
| a | f | 8 |
+------+----+--------+
The first table is a result of a CTE expression, and I can easily get the total of the previous query with SUM, but I'm unable to get the LAST_VALUE to work in a similar way to:
WITH RECURSIVE cte AS (
...
)
SELECT *
FROM cte
UNION ALL
SELECT 'total', FIRST_VALUE(from), LAST_VALUE(to), SUM(weight)
FROM cte
The FIRST_VALUE and LAST_VALUE functions require OVER clauses which seem to add unnecessary complications to what I would expect, so I think I am going the wrong direction with that. Any ideas on how to achieve this?
So I made a strange solution that:
Selects the first from value (partitioned by TRUE)
Selects the last to value (partitioned by TRUE again)
Cross joins the sum of all weights, limited to 1
WITH RECURSIVE cte AS (
...
)
SELECT *
FROM cte
UNION ALL (
SELECT FIRST_VALUE(from) OVER (PARTITION BY TRUE), LAST_VALUE(to) OVER (PARTITION BY TRUE), total
FROM cte
CROSS JOIN (
SELECT SUM(weight) as total
FROM cte
) tmp
LIMIT 1
);
Is it hacky? Yes. Does it work? Also yes. I'm sure there are better solutions, and I would love to hear them.

Selecting on a condition in window function postgresql

I am using postgresql and applying window function. previously I had to find first gid with same last name , and address(street_address and city) so i simply put last name in partition by clause in window function.
but now I have requirement to find first g_id of which last name is not same. while address is same How can I do it ?
This is what i was doing previously.
SELECT g_id as g_id,
First_value(g_id)
OVER (PARTITION BY lname,street_address , city ,
order by last_date DESC NULLS LAST )as c_id,
street_address as street_address FROM my table;
lets say this is my db
g_id | l_name | street_address | city | last_date
_________________________________________________
x1 | bar | abc road | khi | 11-6-19
x2 | bar | abc road | khi | 12-6-19
x3 | foo | abc road | khi | 19-6-19
x4 | harry | abc road | khi | 17-6-19
x5 | bar | xyz road | khi | 11-6-19
_________________________________________________
In previous scenario :
for if i run for the first row my c_id, it should return 'x2' as it considers these rows:
_________________________________________________
g_id | l_name | street_address | city | last_date
_________________________________________________
x1 | bar | abc road | khi | 11-6-19
x2 | bar | abc road | khi | 12-6-19
_________________________________________________
and return a row with latest last_date.
what i want now to select these rows (rows with same street_address and city but no same l_name):
g_id | l_name | street_address | city | last_date
_________________________________________________
x1 | bar | abc road | khi | 11-6-19
x3 | foo | abc road | khi | 19-6-19
x4 | harry | abc road | khi | 17-6-19
_________________________________________________
and output will be x3.
somehow i want to compare last_name column if it is not equals to the current value of last name and then partition by address field. and if no rows satisfy the condition c_id should be equal to current g_id
Looking at your expected output,it's not clear whether you want earliest or oldest for each group. You may change the ORDER BY accordingly for last_date in this query which uses DISTINCT ON
SELECT DISTINCT ON ( street_address, city, l_name) *
FROM mytable
ORDER BY street_address,
city,
l_name,
last_date --change this to last_date desc if you want latest
DEMO
After discussing the details in this chat:
demo:db<>fiddle
SELECT DISTINCT ON (t1.g_id)
t1.*,
COALESCE(t2.g_id, t1.g_id) AS g_id
FROM
mytable t1
LEFT JOIN mytable t2
ON t1.street_address = t2.street_address AND t1.l_name != t2.l_name
ORDER BY t1.g_id, t2.last_date DESC
here is how I solved it using subquery
creating example table.
CREATE TABLE mytable
("g_id" varchar(2), "l_name" varchar(5), "street_address" varchar(8), "city" varchar(3), "last_date" date)
;
INSERT INTO mytable
("g_id", "l_name", "street_address", "city", "last_date")
VALUES
('x1', 'bar', 'abc road', 'khi', '11-6-19'),
('x2', 'bar', 'abc road', 'khi', '12-6-19'),
('x3', 'foo', 'abc road', 'khi', '19-6-19'),
('x4', 'harry', 'abc road', 'khi', '17-6-19'),
('x5', 'bar', 'xyz road', 'khi', '11-6-19')
;
query to get g_ids
SELECT * ,
(select b.g_id from mytable b where (base.g_id = b.g_id) or (base.l_name <>
b.l_name and base.street_address = b.street_address and base.city = b.city )
order by b.last_date desc limit 1)
from mytable base

SELECT DISTINCT on a ordered subquery's table

I'm working on a problem, involving these two tables.
books
isbn | title | author
------------+-----------------------------------------+------------------
1840918626 | Hogwarts: A History | Bathilda Bagshot
3458400871 | Fantastic Beasts and Where to Find Them | Newt Scamander
9136884926 | Advanced Potion-Making | Libatius Borage
transactions
id | patron_id | isbn | checked_out_date | checked_in_date
----+-----------+------------+------------------+-----------------
1 | 1 | 1840918626 | 2012-05-05 | 2012-05-06
2 | 4 | 9136884926 | 2012-05-05 | 2012-05-06
3 | 2 | 3458400871 | 2012-05-05 | 2012-05-06
4 | 3 | 3458400871 | 2018-04-29 | 2018-05-02
5 | 2 | 9136884926 | 2018-05-03 | NULL
6 | 1 | 3458400871 | 2018-05-03 | 2018-05-05
7 | 5 | 3458400871 | 2018-05-05 | NULL
the query "Make a list of all book titles and denote whether or not a copy of that book is checked out." so pretty much just the first table with a checked out column.
im trying to SELECT DISTINCT on a sub query with the checkout books first, but that doesn't work. I've researched and others say to accomplish this use a GROUP BY clause instead of DISTINCT but the examples they provide are one column queries and when more columns are added it doesn't work.
this is my closest attempt
SELECT DISTINCT ON (title)
title, checked_out
FROM(
SELECT b.title, t.checked_in_date IS NULL AS checked_out
FROM transactions t
natural join books b
ORDER BY checked_out DESC
) t;
or you can join only transactions where books are not checked in:
SELECT b.title, t.isbn IS NOT NULL AS checked_out
, t.checked_out_date
FROM books b
LEFT JOIN transactions t ON t.isbn = b.isbn AND t.checked_in_date IS NULL
ORDER BY checked_out DESC
I adjusted your attempt a little bit. Basically I changed the way your data is joined
SELECT DISTINCT ON (title)
title, checked_out
FROM(
SELECT b.title, t.checked_in_date IS NULL AS checked_out
FROM books b
LEFT OUTER JOIN transactions t USING (isbn)
ORDER BY checked_out DESC
) t;

Equivalent to unpivot() in PostgreSQL

Is there a unpivot equivalent function in PostgreSQL?
Create an example table:
CREATE TEMP TABLE foo (id int, a text, b text, c text);
INSERT INTO foo VALUES (1, 'ant', 'cat', 'chimp'), (2, 'grape', 'mint', 'basil');
You can 'unpivot' or 'uncrosstab' using UNION ALL:
SELECT id,
'a' AS colname,
a AS thing
FROM foo
UNION ALL
SELECT id,
'b' AS colname,
b AS thing
FROM foo
UNION ALL
SELECT id,
'c' AS colname,
c AS thing
FROM foo
ORDER BY id;
This runs 3 different subqueries on foo, one for each column we want to unpivot, and returns, in one table, every record from each of the subqueries.
But that will scan the table N times, where N is the number of columns you want to unpivot. This is inefficient, and a big problem when, for example, you're working with a very large table that takes a long time to scan.
Instead, use:
SELECT id,
unnest(array['a', 'b', 'c']) AS colname,
unnest(array[a, b, c]) AS thing
FROM foo
ORDER BY id;
This is easier to write, and it will only scan the table once.
array[a, b, c] returns an array object, with the values of a, b, and c as it's elements.
unnest(array[a, b, c]) breaks the results into one row for each of the array's elements.
You could use VALUES() and JOIN LATERAL to unpivot the columns.
Sample data:
CREATE TABLE test(id int, a INT, b INT, c INT);
INSERT INTO test(id,a,b,c) VALUES (1,11,12,13),(2,21,22,23),(3,31,32,33);
Query:
SELECT t.id, s.col_name, s.col_value
FROM test t
JOIN LATERAL(VALUES('a',t.a),('b',t.b),('c',t.c)) s(col_name, col_value) ON TRUE;
DBFiddle Demo
Using this approach it is possible to unpivot multiple groups of columns at once.
EDIT
Using Zack's suggestion:
SELECT t.id, col_name, col_value
FROM test t
CROSS JOIN LATERAL (VALUES('a', t.a),('b', t.b),('c',t.c)) s(col_name, col_value);
<=>
SELECT t.id, col_name, col_value
FROM test t
,LATERAL (VALUES('a', t.a),('b', t.b),('c',t.c)) s(col_name, col_value);
db<>fiddle demo
Great article by Thomas Kellerer found here
Unpivot with Postgres
Sometimes it’s necessary to normalize de-normalized tables - the opposite of a “crosstab” or “pivot” operation. Postgres does not support an UNPIVOT operator like Oracle or SQL Server, but simulating it, is very simple.
Take the following table that stores aggregated values per quarter:
create table customer_turnover
(
customer_id integer,
q1 integer,
q2 integer,
q3 integer,
q4 integer
);
And the following sample data:
customer_id | q1 | q2 | q3 | q4
------------+-----+-----+-----+----
1 | 100 | 210 | 203 | 304
2 | 150 | 118 | 422 | 257
3 | 220 | 311 | 271 | 269
But we want the quarters to be rows (as they should be in a normalized data model).
In Oracle or SQL Server this could be achieved with the UNPIVOT operator, but that is not available in Postgres. However Postgres’ ability to use the VALUES clause like a table makes this actually quite easy:
select c.customer_id, t.*
from customer_turnover c
cross join lateral (
values
(c.q1, 'Q1'),
(c.q2, 'Q2'),
(c.q3, 'Q3'),
(c.q4, 'Q4')
) as t(turnover, quarter)
order by customer_id, quarter;
will return the following result:
customer_id | turnover | quarter
------------+----------+--------
1 | 100 | Q1
1 | 210 | Q2
1 | 203 | Q3
1 | 304 | Q4
2 | 150 | Q1
2 | 118 | Q2
2 | 422 | Q3
2 | 257 | Q4
3 | 220 | Q1
3 | 311 | Q2
3 | 271 | Q3
3 | 269 | Q4
The equivalent query with the standard UNPIVOT operator would be:
select customer_id, turnover, quarter
from customer_turnover c
UNPIVOT (turnover for quarter in (q1 as 'Q1',
q2 as 'Q2',
q3 as 'Q3',
q4 as 'Q4'))
order by customer_id, quarter;
FYI for those of us looking for how to unpivot in RedShift.
The long form solution given by Stew appears to be the only way to accomplish this.
For those who cannot see it there, here is the text pasted below:
We do not have built-in functions that will do pivot or unpivot. However,
you can always write SQL to do that.
create table sales (regionid integer, q1 integer, q2 integer, q3 integer, q4 integer);
insert into sales values (1,10,12,14,16), (2,20,22,24,26);
select * from sales order by regionid;
regionid | q1 | q2 | q3 | q4
----------+----+----+----+----
1 | 10 | 12 | 14 | 16
2 | 20 | 22 | 24 | 26
(2 rows)
pivot query
create table sales_pivoted (regionid, quarter, sales)
as
select regionid, 'Q1', q1 from sales
UNION ALL
select regionid, 'Q2', q2 from sales
UNION ALL
select regionid, 'Q3', q3 from sales
UNION ALL
select regionid, 'Q4', q4 from sales
;
select * from sales_pivoted order by regionid, quarter;
regionid | quarter | sales
----------+---------+-------
1 | Q1 | 10
1 | Q2 | 12
1 | Q3 | 14
1 | Q4 | 16
2 | Q1 | 20
2 | Q2 | 22
2 | Q3 | 24
2 | Q4 | 26
(8 rows)
unpivot query
select regionid, sum(Q1) as Q1, sum(Q2) as Q2, sum(Q3) as Q3, sum(Q4) as Q4
from
(select regionid,
case quarter when 'Q1' then sales else 0 end as Q1,
case quarter when 'Q2' then sales else 0 end as Q2,
case quarter when 'Q3' then sales else 0 end as Q3,
case quarter when 'Q4' then sales else 0 end as Q4
from sales_pivoted)
group by regionid
order by regionid;
regionid | q1 | q2 | q3 | q4
----------+----+----+----+----
1 | 10 | 12 | 14 | 16
2 | 20 | 22 | 24 | 26
(2 rows)
Hope this helps, Neil
Pulling slightly modified content from the link in the comment from #a_horse_with_no_name into an answer because it works:
Installing Hstore
If you don't have hstore installed and are running PostgreSQL 9.1+, you can use the handy
CREATE EXTENSION hstore;
For lower versions, look for the hstore.sql file in share/contrib and run in your database.
Assuming that your source (e.g., wide data) table has one 'id' column, named id_field, and any number of 'value' columns, all of the same type, the following will create an unpivoted view of that table.
CREATE VIEW vw_unpivot AS
SELECT id_field, (h).key AS column_name, (h).value AS column_value
FROM (
SELECT id_field, each(hstore(foo) - 'id_field'::text) AS h
FROM zcta5 as foo
) AS unpiv ;
This works with any number of 'value' columns. All of the resulting values will be text, unless you cast, e.g., (h).value::numeric.
Just use JSON:
with data (id, name) as (
values (1, 'a'), (2, 'b')
)
select t.*
from data, lateral jsonb_each_text(to_jsonb(data)) with ordinality as t
order by data.id, t.ordinality;
This yields
|key |value|ordinality|
|----|-----|----------|
|id |1 |1 |
|name|a |2 |
|id |2 |1 |
|name|b |2 |
dbfiddle
I wrote a horrible unpivot function for PostgreSQL. It's rather slow but it at least returns results like you'd expect an unpivot operation to.
https://cgsrv1.arrc.csiro.au/blog/2010/05/14/unpivotuncrosstab-in-postgresql/
Hopefully you can find it useful..
Depending on what you want to do... something like this can be helpful.
with wide_table as (
select 1 a, 2 b, 3 c
union all
select 4 a, 5 b, 6 c
)
select unnest(array[a,b,c]) from wide_table
You can use FROM UNNEST() array handling to UnPivot a dataset, tandem with a correlated subquery (works w/ PG 9.4).
FROM UNNEST() is more powerful & flexible than the typical method of using FROM (VALUES .... ) to unpivot datasets. This is b/c FROM UNNEST() is variadic (with n-ary arity). By using a correlated subquery the need for the lateral ORDINAL clause is eliminated, & Postgres keeps the resulting parallel columnar sets in the proper ordinal sequence.
This is, BTW, FAST -- in practical use spawning 8 million rows in < 15 seconds on a 24-core system.
WITH _students AS ( /** CTE **/
SELECT * FROM
( SELECT 'jane'::TEXT ,'doe'::TEXT , 1::INT
UNION
SELECT 'john'::TEXT ,'doe'::TEXT , 2::INT
UNION
SELECT 'jerry'::TEXT ,'roe'::TEXT , 3::INT
UNION
SELECT 'jodi'::TEXT ,'roe'::TEXT , 4::INT
) s ( fn, ln, id )
) /** end WITH **/
SELECT s.id
, ax.fanm -- field labels, now expanded to two rows
, ax.anm -- field data, now expanded to two rows
, ax.someval -- manually incl. data
, ax.rankednum -- manually assigned ranks
,ax.genser -- auto-generate ranks
FROM _students s
,UNNEST /** MULTI-UNNEST() BLOCK **/
(
( SELECT ARRAY[ fn, ln ]::text[] AS anm -- expanded into two rows by outer UNNEST()
/** CORRELATED SUBQUERY **/
FROM _students s2 WHERE s2.id = s.id -- outer relation
)
,( /** ordinal relationship preserved in variadic UNNEST() **/
SELECT ARRAY[ 'first name', 'last name' ]::text[] -- exp. into 2 rows
AS fanm
)
,( SELECT ARRAY[ 'z','x','y'] -- only 3 rows gen'd, but ordinal rela. kept
AS someval
)
,( SELECT ARRAY[ 1,2,3,4,5 ] -- 5 rows gen'd, ordinal rela. kept.
AS rankednum
)
,( SELECT ARRAY( /** you may go wild ... **/
SELECT generate_series(1, 15, 3 )
AS genser
)
)
) ax ( anm, fanm, someval, rankednum , genser )
;
RESULT SET:
+--------+----------------+-----------+----------+---------+-------
| id | fanm | anm | someval |rankednum| [ etc. ]
+--------+----------------+-----------+----------+---------+-------
| 2 | first name | john | z | 1 | .
| 2 | last name | doe | y | 2 | .
| 2 | [null] | [null] | x | 3 | .
| 2 | [null] | [null] | [null] | 4 | .
| 2 | [null] | [null] | [null] | 5 | .
| 1 | first name | jane | z | 1 | .
| 1 | last name | doe | y | 2 | .
| 1 | | | x | 3 | .
| 1 | | | | 4 | .
| 1 | | | | 5 | .
| 4 | first name | jodi | z | 1 | .
| 4 | last name | roe | y | 2 | .
| 4 | | | x | 3 | .
| 4 | | | | 4 | .
| 4 | | | | 5 | .
| 3 | first name | jerry | z | 1 | .
| 3 | last name | roe | y | 2 | .
| 3 | | | x | 3 | .
| 3 | | | | 4 | .
| 3 | | | | 5 | .
+--------+----------------+-----------+----------+---------+ ----
Here's a way that combines the hstore and CROSS JOIN approaches from other answers.
It's a modified version of my answer to a similar question, which is itself based on the method at https://blog.sql-workbench.eu/post/dynamic-unpivot/ and another answer to that question.
-- Example wide data with a column for each year...
WITH example_wide_data("id", "2001", "2002", "2003", "2004") AS (
VALUES
(1, 4, 5, 6, 7),
(2, 8, 9, 10, 11)
)
-- that is tided to have "year" and "value" columns
SELECT
id,
r.key AS year,
r.value AS value
FROM
example_wide_data w
CROSS JOIN
each(hstore(w.*)) AS r(key, value)
WHERE
-- This chooses columns that look like years
-- In other cases you might need a different condition
r.key ~ '^[0-9]{4}$';
It has a few benefits over other solutions:
By using hstore and not jsonb, it hopefully minimises issues with type conversions (although hstore does convert everything to text)
The columns don't need to be hard coded or known in advance. Here, columns are chosen by a regex on the name, but you could use any SQL logic based on the name, or even the value.
It doesn't require PL/pgSQL - it's all SQL