Why does Octave print "dimensions mismatch" whereas MATLAB does not? - matlab

I am trying to run a MATLAB code in Octave but got stuck at the following point:
I is an empty matrix, dimensions 0x4,
a = 2;
The command, belonging to a for-loop, is:
I = [I a];
MATLAB output: I = 2
Octave output: "horizontal dimensions mismatch (0x4 vs 1x1)"
I have found a way to work around this error but I would also like to understand: Why does MATLAB accept those different dimensions whereas Octave prints an error?
Is there a different definition regarding empty matrices and extending those? (Specially because it is not a "normal" empty matrix but a 0x4 empty matrix?)

Matlab issues a warning, alerting you to the fact that this will become an error in future releases:
>> I = magic(4);
>> I(1:4,:) = []
I =
Empty matrix: 0-by-4
>> [I 2]
Warning: This concatenation operation includes an empty array with an incorrect number of rows.
Concatenation including empty arrays will require all arrays to have the same number of rows in a future release.
ans =
2
Same code on Octave:
>> I = magic(4);
>> I(1:4,:)=[]
I = [](0x4)
>> [I 2]
error: horizontal dimensions mismatch (0x4 vs 1x1)
So essentially it's the same issue, except Matlab allows it with a warning for the time being, and is being slightly more informative as to which dimension is actually at fault here, whereas octave is stricter about it and hopes you figure out what it meant 😛. But in essence the behaviour is the same.
It is also very reasonable behaviour, since attempting to concatenate two matrices of different sizes / dimensions is more likely to have come from a bug rather than intended behaviour, even if one of the arrays has become empty in the process, so matlab is wise to go down the octave path here (so to speak).
PS. Note that in this scenario, something like [I;2 2 2 2] is perfectly valid and correct code on both interpreters: i.e. you're concatenating vertically a 4-column matrix with one row to a 4-column matrix with no rows, hence the number of columns is consistent.

Related

Appending a row/column of different size to an array.

Recently, I came across this behaviour in Matlab and I am curious as to know why this happens.
a(1,:) = rand(4,1);
a(2,:) = rand(5,1);
This throws me Subscripted assignment dimension mismatch. error whereas
a(1,:) = rand(4,1);
a(2,1:5) = rand(5,1);
adjusts the array to the max column size and appends zero to the shorter ones.
My question is: Why the former code snippet doesn't do what the latter does(which seems very logical to me)? I don't see any reason as to why the former code snippet should work the way it does. Or am I missing something?
With a(2,:) = rand(5,1);, you are attempting to assign a 5x1 vector to a 4x1 matrix column. Hence the error.
With a(2,1:5) = rand(5,1);, you are explicitly referencing a 5th row, which tells the Matlab engine to expand the matrix accordingly before attempting the assignment operation. Hence, this will succeed.
The way I see it, trying to put 5 values into a 4 row vector likely comes from an error in the code, so the user has to explicitly state that this is what he intends to do. Of course, I can only infer on the intent of Mathworks developers when they specifiy the behavior of their language.

Creating functions in Matlab

Hi, I am trying to write a function as per the question. I have tried to create four sub-matrices which are the reverse of each other and then multiply to give the products demanded by the question. My attempt:
function T = custom_blocksT(n,m)
T(1:end,end-1:1);
T(1:end,end:-1:1)*2;
T(1:end,end:-1:1)*3;
T(1:end,end:-1:1)*4;
What I'm unsure of is
(i) What do the the indivual sub-matrices(T(1:end,end-1:1);)need to be equal to? I was thinking of(1:3)?
(ii) I tried to create a generic sub-matrix which can take any size matrix input using end was this correct or can't you do that? I keep getting this error
Undefined function or variable 'T'.
Error in custom_blocksT (line 2)
T(1:end,end-1:1);
I have searched the Matlab documentation and stacked overflow, but the problem is I'm not quite sure what I'm supposed to be looking for in terms of solving this question.
If someone could help me I would be very thankfull.
There are many problems with your function:
function T = custom_blocksT(n,m)
T(1:end,end-1:1);
T(1:end,end:-1:1)*2;
T(1:end,end:-1:1)*3;
T(1:end,end:-1:1)*4;
end
This is an extremely basic question, I highly recommend you find and work through some very basic MATLAB tutorials before continuing, even before reading this answer to be honest.
That said here is what you should have done and a bit of what you did wrong:
First, you are getting the error that T dos not exist because it doesn't. The only variables that exist in your function are those that you create in the function or those that are passed in as parameters. You should have passed in T as a parameter, but instead you passed in n and m which you don't use.
In the question, they call the function using the example:
custom_blocks([1:3;3:-1:1])
So you can see that they are only passing in one variable, your function takes two and that's already a problem. The one variable is the matrix, not it's dimensions. And the matrix they are passing in is [1:3;3:-1:1] which if you type in the command line you will see gives you
[1 2 3
3 2 1]
So for your first line to take in one argument which is that matrix it should rather read
function TOut = custom_blocks(TIn)
Now what they are asking you to do is create a matrix, TOut, which is just different multiples of TIn concatenated.
What you've done with say TIn(1:end,end-1:1)*2; is just ask MATLAB to multiple TIn by 2 (that's the only correct bit) but then do nothing with it. Furthermore, indexing the rows by 1:end will do what you want (i.e. request all the rows) but in MATLAB you can actually just use : for that. Indexing the columns by end-1:1 will also call all the columns, but in reverse order. So in effect you are flipping your matrix left-to-right which I'm sure is not what you wanted. So you could have just written TIn(:,:) but since that's just requesting the entire matrix unchanged you could actually just write TIn.
So now to multiply and concatenate (i.e. stick together) you do this
TOut = [TIn, TIn*2; TIn*3, TIn*4]
The [] is like a concatenate operation where , is for horizontal and ; is for vertical concatenation.
Putting it all together:
function TOut = custom_blocks(TIn)
TOut = [TIn, TIn*2; TIn*3, TIn*4];
end

How can I use of norm(a,b) in matlab if a, b are double type?

I must to use angle = atan2(norm(cross(a,b)),dot(a,b)), for calculating the angle between two vectors a,b and these are double type and norm is undefined for this type. How do I resolve this problem? I need to calculate the angle between two vectors this way.
In your comments, you have shown us how you are actually writing out the angle calculation and it is not the same as how you have put it in your post.
atan2(norm(cross(I(i,j,:),I_avg)),dot(I(i,j,:),I_avg));
I is an image you are loading in. I'm assuming it's colour because of the way you are subsetting I. Because I is a 3D matrix, doing I(i,j,:) will give you a 1 x 1 x 3 vector when in fact this has to be a 1D vector. norm does not recognize this structure which is why you're getting this error. Therefore, you need to use squeeze to remove the singleton dimensions so that this will become a 3 x 1 vector, rather than a 1 x 1 x 3 vector. As such, you need to rewrite your code so that you're doing this instead. Bear in mind that in your comments, angle is always overwritten inside the for loop, so you probably want to save the results of each pixel. With this, you probably want to create a 2D array of angles that will store these results. In other words:
I=imread('thesis.jpg');
I = double(I);
angles = zeros(m,n);
I_avg = squeeze(I_avg); %// Just in case
for i=1:m
for j=1:n
pixels = squeeze(I(i,j,:)); %// Add this statement and squeeze
angles(i,j) = atan2(norm(pixels,I_avg)),dot(pixels,I_avg)); %// Change
end
end
Minor note
MATLAB has a built-in function called angle that determines the angle from the origin to a complex number in the complex plane. It is not recommended you call your variable angle as this will unintentionally shadow over the angle function, and any other code that you create from this point onwards may rely on that actual angle function, and you will get unintended results.
Another minor note
Using i and j as loop variables is not recommended. These letters are reserved for the complex number, and this can produce unintentional results. Take a look at this question and post by Shai here - Using i and j as variables in Matlab. As such, it is suggested you use other variable names instead.
As #rayryeng has successfully answered this question, I would like to turn my post into a more general one by sharing my experience in debugging in Matlab. I hope anyone who somehow managed to find this post get more or less thinking about the habits a good programmer should have.
The question goes like: "How would I do if I get errors?"
Here's an excellent article by Eric in which he lists the rule-of-thumbs when you encounter a bug and wish to get rid of it. It's originally been cited by Stackoverflow, and that's the reason I read it.
If you still get no clue / idea how you can play with your code, see how this person does:
Pin-point the buggy line
(The number should start with 0) Make sure before running a script, you clear out any previously stored variables, including the notorious i and j's (you should never see them in any workspace). If any one is needed for the buggy code to run, save('buggy.mat','importantvar') before clear and load('buggy.mat') after clear.
By doing so, you can isolate your buggy code from anything else, which could have bad influences. For example, in a previously called script, there is a line
double = [2,4,6]; % you should never name a variable `double`
and in the next script, you have
>> e = str2num('uint8(200)')
e =
200
>> double(e)
Index exceeds matrix dimensions.
>>
>> f = single(2.36)
f =
2.3600
>> double(f)
Subscript indices must either be real positive integers or
logicals.
>>
The reason is double is no longer an inbuild function, but a user-defined variable. Too bad to pick up a name carelessly!
....anyway, let's clear the workspace and get rid of double.
>> clear
Read the error message, thoroughly.
Now let's begin with OP's problem. The original code (trimmed) goes like this -
img = imread('peppers.png');
a = img(300,200,:);
b = img(200,300,:);
d = norm(cross(a,b));
.... hence the error
Undefined function 'norm' for input arguments of type 'uint8'.
Error in untitled (line 6)
d = norm(cross(a,b));
Most beginners are only interested in the first line of the error message, which by it alone usually doesn't provide any useful help, or only in the red color, which leads to the famous question "my code does not work!"
But think twice. You still have another 2 lines unread! Error in untitled (line 6) says I'm running a script named untitled and the (first) error lies in line 6, and the code in that line is d = norm(cross(a,b));.
Now, at least you know a little more about your code - "My code d = norm(cross(a,b)); doesn't work!"
Although most likely we may also vote this kind of question to get closed, it's still much much better than a simply "It does not work!".
Now we can pin-point the buggy line
try
% this line will raise an error
d = norm(cross(a,b));
catch err
disp(err.message)
end
Look into the functions
First, make sure the inner function cross works as expected -
>> cross(a,b)
ans(:,:,1) =
0
ans(:,:,2) =
255
ans(:,:,3) =
0
>>
Good. So now we can even narrow down the error to the outer norm.
One more thing to mention. You can always find Mathworks' documentation for any in-build function, by typing "matlab function", such as "matlab norm" in Google (or any other search engine) and clicking on the first result. If you prefer, you can also type in Matlab command window doc _function_ such as doc norm and read the doc in Matlab. It's of course a pleasure of us on Stackoverflow to give you the reference by doing the same thing, but it takes a longer time because a human is, in this aspect, always slower than a search engine.
The error reads Undefined function 'norm' for input arguments of type 'uint8'.. So the input for norm should not be uint8, unsigned 8-bit integer. But what should it be?
% why `norm` "does not work"?
% this line runs perfectly well
norm(cross([1,2,3], [4,5,6]))
% so what is working?
class([1,2,3]) % so `norm` works for `double`
One thing we can do now is convert a and b to double precision. Let's try it now.
% try fixing 'uint8' error
a2 = double(a);
b2 = double(b);
whos a b % now they are double, which `norm` should work for
try
% this line will raise an error
d = norm(cross(a2,b2));
catch err
disp(err.message)
end
Now the error becomes Input must be 2-D.. What's wrong with the input?
% what is "must be 2-D" error?
size(a2) % a2 is 3-D
disp(b2) % b2 is also 3-D
This gives output in command window
ans =
1 1 3
(:,:,1) =
255
(:,:,2) =
150
(:,:,3) =
0
In OP's problem, he/she is trying to calculate something about color difference (to the best of my knowledge) which involves the angle between two color vectors in RGB space. So the vectors are needed. With imread, each pixel of the image is stored as 3 elements in the matrix, first 2 dimension being its physical position, the 3 dimension being RGB channel components. Hence pixel(200,300) with color rgb[255,150,0] is stored by us in variable b wihch is a 3-D vector.
By understanding what we need and what Matlab can do, we can combine these two points into one. We need the norm of the cross product of a and b, while the useful information (the 3 component values) is stored in the 3rd dimension. Matlab can calculate the norm of the cross product of a vector with all its information in the 1st dimension. (Here, "dimension" refers to that of the Matlab variable; a vector with 3 elements in its 1st dimension is physically a 3-D vector).
After thinking twice, we are now able to debug our code - just put all 3 elements into the 1st dimension.
% so we want the 3 elements in the 3rd dimension become in the 1st dim
a3 = squeeze(a2);
b3 = reshape(b2,numel(b2),[]);
try
d = norm(cross(a3,b3));
catch err
disp(err.message)
end
d
Bonus: If by default Matlab treats a 3-D vector as a "1-D array", then most probably the cross function has not been working correctly. Let's make a check -
>> clear
>> a = [1,2,3]
a =
1 2 3
>> b=[4,5,6]
b =
4 5 6
>> cross(a,b)
ans =
-3 6 -3
>>
The result should be the same as the one we can get by calculating by hand.
Now if we put the components into the 3rd dimension of the variable -
>> clear
>> a(1,1,:)=[1,2,3]
a(:,:,1) =
1
a(:,:,2) =
2
a(:,:,3) =
3
>> b(1,1,:)=[4,5,6]
b(:,:,1) =
4
b(:,:,2) =
5
b(:,:,3) =
6
>> cross(a,b)
ans(:,:,1) =
-3
ans(:,:,2) =
6
ans(:,:,3) =
-3
>>
.... seems OK. cross also puts the result in the 3rd dimension. In fact, Mathworks' documentation says
If A and B are vectors, then they must have a length of 3.
If A and B are matrices or multidimensional arrays, then they must
have the same size. In this case, the cross function treats A and B as
collections of three-element vectors. The function calculates the
cross product of corresponding vectors along the first array dimension
whose size equals 3.
At last, one thing is always correct to anyone who wants to do something with programming - be cautious and prudent when writing your code.

Unable to replace values in a matrix

I'm currently working on a cellular automata but i keep running into this problem. I have a matrix idxR which contains zero's and/or ones, depending on a probability process:
idxR = ((rRecr>rEmpty)&(rRecr>rAlgae)&(rRecr>rCoral));
Now i want to replace all ones in idxR with unique values and assign it to the variable colonies. I came up with the following:
colonies = idxR;
no = sum(colonies(:)==1)
maxvalue = max(colonies(:));
replace = [1:no]+maxvalue;
ret = reshape(replace,no,1);
colonies(colonies==1) = colonies(colonies==1).*ret;
When i output colonies it gives me a matrix with just ones and zeros and not a matrix where all ones have been replaced with incremental values. I tried this code in a new file and assigned a matrix with random ones and zeros to idxR and then it seems to work. So i guess to problem lies with the matrix idxR in my automata. It might be worth mentioning that idxR is contained in a for loop.
Can somebody tell me how to fix this?
You got the entire logic correct, except one minor flaw. You have idxR as a logical matrix. Hence colonies is a logical matrix too. Therefore, you get the expected output till the second-last line. Problem occurs on the last line, when you try to assign an array of numbers in which each number is greater than 1 (colonies(colonies==1).*ret;) to a logical matrix.
Elements greater than 1 are clipped to one and thus you see only zeros and ones. There is a simple workaround. Change the first line to
colonies = double(idxR);
P.S. The answer was right in front of you, you just didn't spot it. You had written:
I tried this code in a new file and assigned a matrix with random ones and zeros to idxR and then it seems to work.
The idxR matrix must have been of double datatype, if you used randi.
Parag got it right. You have the solution there.
You can use the following code if you are looking for a more "organized" way to get to 'colonies' -
colonies = double(idxR);
maxvalue = max(colonies(:));
ind1 = find(idxR==1);
colonies(ind1)=maxvalue + (1:numel(ind1));

What is your favourite MATLAB/Octave programming trick? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
I think everyone would agree that the MATLAB language is not pretty, or particularly consistent. But nevermind! We still have to use it to get things done.
What are your favourite tricks for making things easier? Let's have one per answer so people can vote them up if they agree. Also, try to illustrate your answer with an example.
Using the built-in profiler to see where the hot parts of my code are:
profile on
% some lines of code
profile off
profile viewer
or just using the built in tic and toc to get quick timings:
tic;
% some lines of code
toc;
Directly extracting the elements of a matrix that satisfy a particular condition, using logical arrays:
x = rand(1,50) .* 100;
xpart = x( x > 20 & x < 35);
Now xpart contains only those elements of x which lie in the specified range.
Provide quick access to other function documentation by adding a "SEE ALSO" line to the help comments. First, you must include the name of the function in all caps as the first comment line. Do your usual comment header stuff, then put SEE ALSO with a comma separated list of other related functions.
function y = transmog(x)
%TRANSMOG Transmogrifies a matrix X using reverse orthogonal eigenvectors
%
% Usage:
% y = transmog(x)
%
% SEE ALSO
% UNTRANSMOG, TRANSMOG2
When you type "help transmog" at the command line, you will see all the comments in this comment header, with hyperlinks to the comment headers for the other functions listed.
Turn a matrix into a vector using a single colon.
x = rand(4,4);
x(:)
Vectorizing loops. There are lots of ways to do this, and it is entertaining to look for loops in your code and see how they can be vectorized. The performance is astonishingly faster with vector operations!
Anonymous functions, for a few reasons:
to make a quick function for one-off uses, like 3x^2+2x+7. (see listing below) This is useful for functions like quad and fminbnd that take functions as arguments. It's also convenient in scripts (.m files that don't start with a function header) since unlike true functions you can't include subfunctions.
for closures -- although anonymous functions are a little limiting as there doesn't seem to be a way to have assignment within them to mutate state.
.
% quick functions
f = #(x) 3*x.^2 + 2*x + 7;
t = (0:0.001:1);
plot(t,f(t),t,f(2*t),t,f(3*t));
% closures (linfunc below is a function that returns a function,
% and the outer functions arguments are held for the lifetime
% of the returned function.
linfunc = #(m,b) #(x) m*x+b;
C2F = linfunc(9/5, 32);
F2C = linfunc(5/9, -32*5/9);
Matlab's bsxfun, arrayfun, cellfun, and structfun are quite interesting and often save a loop.
M = rand(1000, 1000);
v = rand(1000, 1);
c = bsxfun(#plus, M, v);
This code, for instance, adds column-vector v to each column of matrix M.
Though, in performance critical parts of your application you should benchmark these functions versus the trivial for-loop because often loops are still faster.
LaTeX mode for formulas in graphs: In one of the recent releases (R2006?) you add the additional arguments ,'Interpreter','latex' at the end of a function call and it will use LaTeX rendering. Here's an example:
t=(0:0.001:1);
plot(t,sin(2*pi*[t ; t+0.25]));
xlabel('t');
ylabel('$\hat{y}_k=sin 2\pi (t+{k \over 4})$','Interpreter','latex');
legend({'$\hat{y}_0$','$\hat{y}_1$'},'Interpreter','latex');
Not sure when they added it, but it works with R2006b in the text(), title(), xlabel(), ylabel(), zlabel(), and even legend() functions. Just make sure the syntax you are using is not ambiguous (so with legend() you need to specify the strings as a cell array).
Using xlim and ylim to draw vertical and horizontal lines. Examples:
Draw a horizontal line at y=10:
line(xlim, [10 10])
Draw vertical line at x=5:
line([5 5], ylim)
Here's a quick example:
I find the comma separated list syntax quite useful for building function calls:
% Build a list of args, like so:
args = {'a', 1, 'b', 2};
% Then expand this into arguments:
output = func(args{:})
Here's a bunch of nonobvious functions that are useful from time to time:
mfilename (returns the name of the currently running MATLAB script)
dbstack (gives you access to the names & line numbers of the matlab function stack)
keyboard (stops execution and yields control to the debugging prompt; this is why there's a K in the debug prompt K>>
dbstop error (automatically puts you in debug mode stopped at the line that triggers an error)
I like using function handles for lots of reasons. For one, they are the closest thing I've found in MATLAB to pointers, so you can create reference-like behavior for objects. There are a few neat (and simpler) things you can do with them, too. For example, replacing a switch statement:
switch number,
case 1,
outargs = fcn1(inargs);
case 2,
outargs = fcn2(inargs);
...
end
%
%can be turned into
%
fcnArray = {#fcn1, #fcn2, ...};
outargs = fcnArray{number}(inargs);
I just think little things like that are cool.
Using nargin to set default values for optional arguments and using nargout to set optional output arguments. Quick example
function hLine=myplot(x,y,plotColor,markerType)
% set defaults for optional paramters
if nargin<4, markerType='none'; end
if nargin<3, plotColor='k'; end
hL = plot(x,y,'linetype','-', ...
'color',plotColor, ...
'marker',markerType, ...
'markerFaceColor',plotColor,'markerEdgeColor',plotColor);
% return handle of plot object if required
if nargout>0, hLine = hL; end
Invoking Java code from Matlab
cellfun and arrayfun for automated for loops.
Oh, and reverse an array
v = 1:10;
v_reverse = v(length(v):-1:1);
conditional arguments in the left-hand side of an assignment:
t = (0:0.005:10)';
x = sin(2*pi*t);
x(x>0.5 & t<5) = 0.5;
% This limits all values of x to a maximum of 0.5, where t<5
plot(t,x);
Know your axis properties! There are all sorts of things you can set to tweak the default plotting properties to do what you want:
set(gca,'fontsize',8,'linestyleorder','-','linewidth',0.3,'xtick',1:2:9);
(as an example, sets the fontsize to 8pt, linestyles of all new lines to all be solid and their width 0.3pt, and the xtick points to be [1 3 5 7 9])
Line and figure properties are also useful, but I find myself using axis properties the most.
Be strict with specifying dimensions when using aggregation functions like min, max, mean, diff, sum, any, all,...
For instance the line:
reldiff = diff(a) ./ a(1:end-1)
might work well to compute relative differences of elements in a vector, however in case the vector degenerates to just one element the computation fails:
>> a=rand(1,7);
>> diff(a) ./ a(1:end-1)
ans =
-0.5822 -0.9935 224.2015 0.2708 -0.3328 0.0458
>> a=1;
>> diff(a) ./ a(1:end-1)
??? Error using ==> rdivide
Matrix dimensions must agree.
If you specify the correct dimensions to your functions, this line returns an empty 1-by-0 matrix, which is correct:
>> diff(a, [], 2) ./ a(1, 1:end-1)
ans =
Empty matrix: 1-by-0
>>
The same goes for a min-function which usually computes minimums over columns on a matrix, until the matrix only consists of one row. - Then it will return the minimum over the row unless the dimension parameter states otherwise, and probably break your application.
I can almost guarantee you that consequently setting the dimensions of these aggregation functions will save you quite some debugging work later on.
At least that would have been the case for me. :)
The colon operator for the manipulation of arrays.
#ScottieT812, mentions one: flattening an array, but there's all the other variants of selecting bits of an array:
x=rand(10,10);
flattened=x(:);
Acolumn=x(:,10);
Arow=x(10,:);
y=rand(100);
firstSix=y(1:6);
lastSix=y(end-5:end);
alternate=y(1:2:end);
In order to be able to quickly test a function, I use nargin like so:
function result = multiply(a, b)
if nargin == 0 %no inputs provided, run using defaults for a and b
clc;
disp('RUNNING IN TEST MODE')
a = 1;
b = 2;
end
result = a*b;
Later on, I add a unit test script to test the function for different input conditions.
Using ismember() to merge data organized by text identfiers. Useful when you are analyzing differing periods when entries, in my case company symbols, come and go.
%Merge B into A based on Text identifiers
UniverseA = {'A','B','C','D'};
UniverseB = {'A','C','D'};
DataA = [20 40 60 80];
DataB = [30 50 70];
MergeData = NaN(length(UniverseA),2);
MergeData(:,1) = DataA;
[tf, loc] = ismember(UniverseA, UniverseB);
MergeData(tf,2) = DataB(loc(tf));
MergeData =
20 30
40 NaN
60 50
80 70
Asking 'why' (useful for jarring me out of a Matlab runtime-fail debugging trance at 3am...)
Executing a Simulink model directly from a script (rather than interactively) using the sim command. You can do things like take parameters from a workspace variable, and repeatedly run sim in a loop to simulate something while varying the parameter to see how the behavior changes, and graph the results with whatever graphical commands you like. Much easier than trying to do this interactively, and it gives you much more flexibility than the Simulink "oscilloscope" blocks when visualizing the results. (although you can't use it to see what's going on in realtime while the simulation is running)
A really important thing to know is the DstWorkspace and SrcWorkspace options of the simset command. These control where the "To Workspace" and "From Workspace" blocks get and put their results. Dstworkspace defaults to the current workspace (e.g. if you call sim from inside a function the "To Workspace" blocks will show up as variables accessible from within that same function) but SrcWorkspace defaults to the base workspace and if you want to encapsulate your call to sim you'll want to set SrcWorkspace to current so there is a clean interface to providing/retrieving simulation input parameters and outputs. For example:
function Y=run_my_sim(t,input1,params)
% runs "my_sim.mdl"
% with a From Workspace block referencing I1 as an input signal
% and parameters referenced as fields of the "params" structure
% and output retrieved from a To Workspace block with name O1.
opt = simset('SrcWorkspace','current','DstWorkspace','current');
I1 = struct('time',t,'signals',struct('values',input1,'dimensions',1));
Y = struct;
Y.t = sim('my_sim',t,opt);
Y.output1 = O1.signals.values;
Contour plots with [c,h]=contour and clabel(c,h,'fontsize',fontsize). I usually use the fontsize parameter to reduce the font size so the numbers don't run into each other. This is great for viewing the value of 2-D functions without having to muck around with 3D graphs.
Vectorization:
function iNeedle = findClosest(hay,needle)
%FINDCLOSEST find the indicies of the closest elements in an array.
% Given two vectors [A,B], findClosest will find the indicies of the values
% in vector A closest to the values in vector B.
[hay iOrgHay] = sort(hay(:)'); %#ok must have row vector
% Use histogram to find indices of elements in hay closest to elements in
% needle. The bins are centered on values in hay, with the edges on the
% midpoint between elements.
[iNeedle iNeedle] = histc(needle,[-inf hay+[diff(hay)/2 inf]]); %#ok
% Reversing the sorting.
iNeedle = iOrgHay(iNeedle);
Using persistent (static) variables when running an online algorithm. It may speed up the code in areas like Bayesian machine learning where the model is trained iteratively for the new samples. For example, for computing the independent loglikelihoods, I compute the loglikelihood initially from scratch and update it by summing this previously computed loglikelihood and the additional loglikelihood.
Instead of giving a more specialized machine learning problem, let me give a general online averaging code which I took from here:
function av = runningAverage(x)
% The number of values entered so far - declared persistent.
persistent n;
% The sum of values entered so far - declared persistent.
persistent sumOfX;
if x == 'reset' % Initialise the persistent variables.
n = 0;
sumOfX = 0;
av = 0;
else % A data value has been added.
n = n + 1;
sumOfX = sumOfX + x;
av = sumOfX / n; % Update the running average.
end
Then, the calls will give the following results
runningAverage('reset')
ans = 0
>> runningAverage(5)
ans = 5
>> runningAverage(10)
ans = 7.5000
>> runningAverage(3)
ans = 6
>> runningAverage('reset')
ans = 0
>> runningAverage(8)
ans = 8
I'm surprised that while people mentioned the logical array approach of indexing an array, nobody mentioned the find command.
e.g. if x is an NxMxO array
x(x>20) works by generating an NxMxO logical array and using it to index x (which can be bad if you have large arrays and are looking for a small subset
x(find(x>20)) works by generating list (i.e. 1xwhatever) of indices of x that satisfy x>20, and indexing x by it. "find" should be used more than it is, in my experience.
More what I would call 'tricks'
you can grow/append to arrays and cell arrays if you don't know the size you'll need, by using end + 1 (works with higher dimensions too, so long as the dimensions of the slice match -- so you'll have to initialize x to something other than [] in that case). Not good for numerics but for small dynamic lists of things (or cell arrays), e.g. parsing files.
e.g.
>> x=[1,2,3]
x = 1 2 3
>> x(end+1)=4
x = 1 2 3 4
Another think many people don't know is that for works on any dim 1 array, so to continue the example
>> for n = x;disp(n);end
1
2
3
4
Which means if all you need is the members of x you don't need to index them.
This also works with cell arrays but it's a bit annoying because as it walks them the element is still wrapped in a cell:
>> for el = {1,2,3,4};disp(el);end
[1]
[2]
[3]
[4]
So to get at the elements you have to subscript them
>> for el = {1,2,3,4};disp(el{1});end
1
2
3
4
I can't remember if there is a nicer way around that.
-You can make a Matlab shortcut to an initialization file called startup.m. Here, I define formatting, precision of the output, and plot parameters for my Matlab session (for example, I use a larger plot axis/font size so that .fig's can be seen plainly when I put them in presentations.) See a good blog post from one of the developers about it http://blogs.mathworks.com/loren/2009/03/03/whats-in-your-startupm/ .
-You can load an entire numerical ascii file using the "load" function. This isn't particularly fast, but gets the job done quickly for prototyping (shouldn't that be the Matlab motto?)
-As mentioned, the colon operator and vectorization are lifesavers. Screw loops.
x=repmat([1:10],3,1); % say, x is an example array of data
l=x>=3; % l is a logical vector (1s/0s) to highlight those elements in the array that would meet a certain condition.
N=sum(sum(l));% N is the number of elements that meet that given condition.
cheers -- happy scripting!