How do I combine two columns in a Spark SchemaRDD containing WrappedArrays into a 3rd column with the combined WrappedArray? - scala

I have a DataFrame with two columns ( "features1" and "features2" ) containing WrappedArrays.
I need to combine the two columns into a third column containing the merged contents of the first two columns as a WrappedArray.
How do I do this?
I'm using Scala not PySpark

I didn't find another way than a udf, surprisingly
def catArray[A](a:Seq[A], b: Seq[A]): Seq[A] = a ++ b
val catArrayUdf = udf { catArray[Int] _ }
Then
scala> sc.parallelize(List((Seq(1,2),Seq(3,4))))
.toDF("A","B")
.withColumn("cat",catArray('A,'B))
.show(false)
+------+------+------------+
|A |B |cat |
+------+------+------------+
|[1, 2]|[3, 4]|[1, 2, 3, 4]|
+------+------+------------+
Maybe there is a shorter way to define the UDF based on ++ though.

Related

Scala Spark - split vector column into separate columns in a Spark DataFrame

I have a Spark DataFrame where I have a column with Vector values. The vector values are all n-dimensional, aka with the same length. I also have a list of column names Array("f1", "f2", "f3", ..., "fn"), each corresponds to one element in the vector.
some_columns... | Features
... | [0,1,0,..., 0]
to
some_columns... | f1 | f2 | f3 | ... | fn
... | 0 | 1 | 0 | ... | 0
What is the best way to achieve this? I thought of one way which is to create a new DataFrame with createDataFrame(Row(Features), featureNameList) and then join with the old one, but it requires spark context to use createDataFrame. I only want to transform the existing data frame. I also know .withColumn("fi", value) but what do I do if n is large?
I'm new to Scala and Spark and couldn't find any good examples for this. I think this can be a common task. My particular case is that I used the CountVectorizer and wanted to recover each column individually for better readability instead of only having the vector result.
One way could be to convert the vector column to an array<double> and then using getItem to extract individual elements.
import org.apache.spark.sql.functions._
import org.apache.spark.ml._
val df = Seq( (1 , linalg.Vectors.dense(1,0,1,1,0) ) ).toDF("id", "features")
//df: org.apache.spark.sql.DataFrame = [id: int, features: vector]
df.show
//+---+---------------------+
//|id |features |
//+---+---------------------+
//|1 |[1.0,0.0,1.0,1.0,0.0]|
//+---+---------------------+
// A UDF to convert VectorUDT to ArrayType
val vecToArray = udf( (xs: linalg.Vector) => xs.toArray )
// Add a ArrayType Column
val dfArr = df.withColumn("featuresArr" , vecToArray($"features") )
// Array of element names that need to be fetched
// ArrayIndexOutOfBounds is not checked.
// sizeof `elements` should be equal to the number of entries in column `features`
val elements = Array("f1", "f2", "f3", "f4", "f5")
// Create a SQL-like expression using the array
val sqlExpr = elements.zipWithIndex.map{ case (alias, idx) => col("featuresArr").getItem(idx).as(alias) }
// Extract Elements from dfArr
dfArr.select(sqlExpr : _*).show
//+---+---+---+---+---+
//| f1| f2| f3| f4| f5|
//+---+---+---+---+---+
//|1.0|0.0|1.0|1.0|0.0|
//+---+---+---+---+---+

Process all columns / the entire row in a Spark UDF

For a dataframe containing a mix of string and numeric datatypes, the goal is to create a new features column that is a minhash of all of them.
While this could be done by performing a dataframe.toRDD it is expensive to do that when the next step will be to simply convert the RDD back to a dataframe.
So is there a way to do a udf along the following lines:
val wholeRowUdf = udf( (row: Row) => computeHash(row))
Row is not a spark sql datatype of course - so this would not work as shown.
Update/clarifiction I realize it is easy to create a full-row UDF that runs inside withColumn. What is not so clear is what can be used inside a spark sql statement:
val featurizedDf = spark.sql("select wholeRowUdf( what goes here? ) as features
from mytable")
Row is not a spark sql datatype of course - so this would not work as shown.
I am going to show that you can use Row to pass all the columns or selected columns to a udf function using struct inbuilt function
First I define a dataframe
val df = Seq(
("a", "b", "c"),
("a1", "b1", "c1")
).toDF("col1", "col2", "col3")
// +----+----+----+
// |col1|col2|col3|
// +----+----+----+
// |a |b |c |
// |a1 |b1 |c1 |
// +----+----+----+
Then I define a function to make all the elements in a row as one string separated by , (as you have computeHash function)
import org.apache.spark.sql.Row
def concatFunc(row: Row) = row.mkString(", ")
Then I use it in udf function
import org.apache.spark.sql.functions._
def combineUdf = udf((row: Row) => concatFunc(row))
Finally I call the udf function using withColumn function and struct inbuilt function combining selected columns as one column and pass to the udf function
df.withColumn("contcatenated", combineUdf(struct(col("col1"), col("col2"), col("col3")))).show(false)
// +----+----+----+-------------+
// |col1|col2|col3|contcatenated|
// +----+----+----+-------------+
// |a |b |c |a, b, c |
// |a1 |b1 |c1 |a1, b1, c1 |
// +----+----+----+-------------+
So you can see that Row can be used to pass whole row as an argument
You can even pass all columns in a row at once
val columns = df.columns
df.withColumn("contcatenated", combineUdf(struct(columns.map(col): _*)))
Updated
You can achieve the same with sql queries too, you just need to register the udf function as
df.createOrReplaceTempView("tempview")
sqlContext.udf.register("combineUdf", combineUdf)
sqlContext.sql("select *, combineUdf(struct(`col1`, `col2`, `col3`)) as concatenated from tempview")
It will give you the same result as above
Now if you don't want to hardcode the names of columns then you can select the column names according to your desire and make it a string
val columns = df.columns.map(x => "`"+x+"`").mkString(",")
sqlContext.sql(s"select *, combineUdf(struct(${columns})) as concatenated from tempview")
I hope the answer is helpful
I came up with a workaround: drop the column names into any existing spark sql function to generate a new output column:
concat(${df.columns.tail.mkString(",'-',")}) as Features
In this case the first column in the dataframe is a target and was excluded. That is another advantage of this approach: the actual list of columns many be manipulated.
This approach avoids unnecessary restructuring of the RDD/dataframes.

How to perform arithmetic operation on two seperate dataframes in Apache Spark?

I have two dataframes as follows which have only one row and one column each. Both holds two different numeric values.
How do I perform or achieve division or other arithmetic operation on those two dataframe values?
Please help.
First, if these DataFrames contain a single record each - any further use of Spark would likely be wasteful (Spark is intended for large data sets, small ones would be processed faster locally). So, you can simply collect these one-record values using first() an go on from there:
import spark.implicits._
val df1 = Seq(2.0).toDF("col1")
val df2 = Seq(3.5).toDF("col2")
val v1: Double = df1.first().getAs[Double](0)
val v2: Double = df2.first().getAs[Double](0)
val sum = v1 + v2
If, for some reason, you do want to use DataFrames all the way, you can use crossJoin to join the records together and then apply any arithmetic operation:
import spark.implicits._
val df1 = Seq(2.0).toDF("col1")
val df2 = Seq(3.5).toDF("col2")
df1.crossJoin(df2)
.select($"col1" + $"col2" as "sum")
.show()
// +---+
// |sum|
// +---+
// |5.5|
// +---+
If you have dataframes as
scala> df1.show(false)
+------+
|value1|
+------+
|2 |
+------+
scala> df2.show(false)
+------+
|value2|
+------+
|2 |
+------+
You can get the value by doing the following
scala> df1.take(1)(0)(0)
res3: Any = 2
But the dataType is Any, type casting is needed before we do arithmetic operations as
scala> df1.take(1)(0)(0).asInstanceOf[Int]*df2.take(1)(0)(0).asInstanceOf[Int]
res8: Int = 4

How to calculate product of columns followed by sum over all columns?

Table 1 --Spark DataFrame table
There is a column called "productMe" in Table 1; and there are also other columns like a, b, c and so on whose schema name is contained in a schema array T.
What I want is the inner product of columns(product each row of the two columns) in schema array T with the column productMe(Table 2). And sum each column of Table 2 to get Table 3.
Table 2 is not necessary if you have good idea to get Table 3 in one step.
Table 2 -- Inner product table
For example, the column "a·productMe" is (3*0.2, 6*0.6, 5*0.4) to get (0.6, 3.6, 2)
Table 3 -- sum table
For example, the column "sum(a·productMe)" is 0.6+3.6+2=6.2.
Table 1 is DataFrame of Spark, how can I get Table 3?
You can try something like the following :
val df = Seq(
(3,0.2,0.5,0.4),
(6,0.6,0.3,0.1),
(5,0.4,0.6,0.5)).toDF("productMe", "a", "b", "c")
import org.apache.spark.sql.functions.col
val columnsToSum = df.
columns. // <-- grab all the columns by their name
tail. // <-- skip productMe
map(col). // <-- create Column objects
map(c => round(sum(c * col("productMe")), 3).as(s"sum_${c}_productMe"))
val df2 = df.select(columnsToSum: _*)
df2.show()
# +---------------+---------------+---------------+
# |sum_a_productMe|sum_b_productMe|sum_c_productMe|
# +---------------+---------------+---------------+
# | 6.2| 6.3| 4.3|
# +---------------+---------------+---------------+
The trick is to use df.select(columnsToSum: _*) which means that you want to select all the columns on which we did the sum of columns times the productMe column. The :_* is a Scala-specific syntax to specify that we are passing repeated arguments because we don't have a fix number of arguments.
We can do it with simple SparkSql
val table1 = Seq(
(3,0.2,0.5,0.4),
(6,0.6,0.3,0.1),
(5,0.4,0.6,0.5)
).toDF("productMe", "a", "b", "c")
table1.show
table1.createOrReplaceTempView("table1")
val table2 = spark.sql("select a*productMe, b*productMe, c*productMe from table1") //spark is sparkSession here
table2.show
val table3 = spark.sql("select sum(a*productMe), sum(b*productMe), sum(c*productMe) from table1")
table3.show
All the other answers use sum aggregation that use groupBy under the covers.
groupBy always introduces a shuffle stage and usually (always?) is slower than corresponding window aggregates.
In this particular case, I also believe that window aggregates give better performance as you can see in their physical plans and details for their only one job.
CAUTION
Either solution uses one single partition to do the calculation that in turn makes them unsuitable for large datasets as their size together may easily exceed the memory size of a single JVM.
Window Aggregates
What follows is a window aggregate-based calculation which, in this particular case where we group over all the rows in a dataset, unfortunately gives the same physical plan. That makes my answer just a (hopefully) nice learning experience.
val df = Seq(
(3,0.2,0.5,0.4),
(6,0.6,0.3,0.1),
(5,0.4,0.6,0.5)).toDF("productMe", "a", "b", "c")
// yes, I did borrow this trick with columns from #eliasah's answer
import org.apache.spark.sql.functions.col
val columns = df.columns.tail.map(col).map(c => c * col("productMe") as s"${c}_productMe")
val multiplies = df.select(columns: _*)
scala> multiplies.show
+------------------+------------------+------------------+
| a_productMe| b_productMe| c_productMe|
+------------------+------------------+------------------+
|0.6000000000000001| 1.5|1.2000000000000002|
|3.5999999999999996|1.7999999999999998|0.6000000000000001|
| 2.0| 3.0| 2.5|
+------------------+------------------+------------------+
def sumOverRows(name: String) = sum(name) over ()
val multipliesCols = multiplies.
columns.
map(c => sumOverRows(c) as s"sum_${c}")
val answer = multiplies.
select(multipliesCols: _*).
limit(1) // <-- don't use distinct or dropDuplicates here
scala> answer.show
+-----------------+---------------+-----------------+
| sum_a_productMe|sum_b_productMe| sum_c_productMe|
+-----------------+---------------+-----------------+
|6.199999999999999| 6.3|4.300000000000001|
+-----------------+---------------+-----------------+
Physical Plan
Let's see the physical plan then (as it was the only reason why we wanted to see how to do the query using window aggregates, wasn't it?)
The following is the details for the only job 0.
If I understand your question correctly then following can be your solution
val df = Seq(
(3,0.2,0.5,0.4),
(6,0.6,0.3,0.1),
(5,0.4,0.6,0.5)
).toDF("productMe", "a", "b", "c")
This gives input dataframe as you have (you can add more)
+---------+---+---+---+
|productMe|a |b |c |
+---------+---+---+---+
|3 |0.2|0.5|0.4|
|6 |0.6|0.3|0.1|
|5 |0.4|0.6|0.5|
+---------+---+---+---+
And
val productMe = df.columns.head
val colNames = df.columns.tail
var tempdf = df
for(column <- colNames){
tempdf = tempdf.withColumn(column, col(column)*col(productMe))
}
Above steps should give you Table2
+---------+------------------+------------------+------------------+
|productMe|a |b |c |
+---------+------------------+------------------+------------------+
|3 |0.6000000000000001|1.5 |1.2000000000000002|
|6 |3.5999999999999996|1.7999999999999998|0.6000000000000001|
|5 |2.0 |3.0 |2.5 |
+---------+------------------+------------------+------------------+
Table3 can be achieved as following
tempdf.select(sum("a").as("sum(a.productMe)"), sum("b").as("sum(b.productMe)"), sum("c").as("sum(c.productMe)")).show(false)
Table3 is
+-----------------+----------------+-----------------+
|sum(a.productMe) |sum(b.productMe)|sum(c.productMe) |
+-----------------+----------------+-----------------+
|6.199999999999999|6.3 |4.300000000000001|
+-----------------+----------------+-----------------+
Table2 can be achieved for any number of columns you have but Table3 would require you to define columns explicitly

How to merge two columns of a `Dataframe` in Spark into one 2-Tuple?

I have a Spark DataFrame df with five columns. I want to add another column with its values being the tuple of the first and second columns. When using with withColumn() method, I get the mismatch error, because the input is not Column type, but instead (Column,Column). I wonder if there is a solution beside running for loop over the rows in this case?
var dfCol=(col1:Column,col2:Column)=>(col1,col2)
val vv = df.withColumn( "NewColumn", dfCol( df(df.schema.fieldNames(1)) , df(df.schema.fieldNames(2)) ) )
You can use struct function which creates a tuple of provided columns:
import org.apache.spark.sql.functions.struct
val df = Seq((1,2), (3,4), (5,3)).toDF("a", "b")
df.withColumn("NewColumn", struct(df("a"), df("b")).show(false)
+---+---+---------+
|a |b |NewColumn|
+---+---+---------+
|1 |2 |[1,2] |
|3 |4 |[3,4] |
|5 |3 |[5,3] |
+---+---+---------+
You can use a User-defined function udf to achieve what you want.
UDF definition
object TupleUDFs {
import org.apache.spark.sql.functions.udf
// type tag is required, as we have a generic udf
import scala.reflect.runtime.universe.{TypeTag, typeTag}
def toTuple2[S: TypeTag, T: TypeTag] =
udf[(S, T), S, T]((x: S, y: T) => (x, y))
}
Usage
df.withColumn(
"tuple_col", TupleUDFs.toTuple2[Int, Int].apply(df("a"), df("b"))
)
assuming "a" and "b" are the columns of type Int you want to put in a tuple.
You can merge multiple dataframe columns into one using array.
// $"*" will capture all existing columns
df.select($"*", array($"col1", $"col2").as("newCol"))
If you want to merge two dataframe columns into one column.
Just:
import org.apache.spark.sql.functions.array
df.withColumn("NewColumn", array("columnA", "columnB"))