How to extend a column vector to a matrix in matlab - matlab

For a vector a = [1 2 3]', I want to extend it to matrix [1:1+n;2:2+n;3:3+n]. Just like extend a number x to a sequential vector by x:x+a.

You can use bsxfun to add 0:n to each element in a
b = bsxfun(#plus, a, 0:n)
Or if you're using MATLAB R2016b, you can replace the bsxfun approach with the following thanks to automatic broadcasting of dimensions.
b = a + 0:n

Related

Sum over blocks in a 3D matrix - MATLAB

For a 3N by 3N by 3N matrix A, I would like to derive a N by N by N matrix B whose entries come from summation over blocks in A.
For example, B(1,1,1) = sum of all elements of A(1:3,1:3,1:3).
Basically, A is kind of a high resolution matrix and B is a low resolution matrix from summing over entries in A.
If memory is not a concern, you can use a "labelling" approach: build a 3-component label to group the elements of A, and use that label as the first input argument to accumarray to do the sum. The label uses integers from 1 to N, so the result of accumarray already has the desired shape (NxNxN).
N = 5;
F = 3; %// block size per dimension
A = rand(15,15,15); %// example data. Size FN x FN x FN
[ii jj kk] = ind2sub(size(A), 1:numel(A));
label = ceil([ii.' jj.' kk.']/F);
result = accumarray(label, A(:));
reshape + sum based approach and as such has to be pretty efficient -
sumrows = sum(reshape(A,3,[]),1); %// Sum along rows
sumcols = sum(reshape(sumrows,N,3,[]),2); %// Sum along cols
B = reshape(sum(reshape(sumcols,N*N,3,[]),2),N,N,N); %// Sum along 3rd dim
If you are crazy about one-liners, here's that combining all steps into one -
B = reshape(sum(reshape(sum(reshape(sum(reshape(A,3,[]),1),N,3,[]),2),N*N,3,[]),2),N,N,N);
For a 2D matrix, this would work:
B = reshape(sum(im2col(A, [3 3], 'distinct')), [N N]);
NB: You need the image processing toolbox.
But for 3D matrices, I don't know of any built-in function equivalent to im2col. You might have to use a loop. Left as an exercise to the reader ;)

Multiply two matrices in Matlab to obtain 3-dimensional matrix

I have two sparse matrices in Matlab, A and B,
and I want to compute a three-dimensional matrix C such that
C(i,j,k) = A(i,j) * B(j,k)
can I do this without a loop?
(Side question: Is there a name for this operation?)
Edit:
Seems my question has already been asked (just for full matrices):
Create a 3-dim matrix from two 2-dim matrices
For full matrices:
You can do it using bsxfun and shiftdim:
C = bsxfun(#times, A, shiftdim(B,-1))
Explanation: Let A be of size M x N and B of size N x P. Applying shiftdim(B,-1) gives a 1 x N x P array. bsxfun implicitly replicates A along the third dimension and shiftdim(B,-1) along the first to compute the desired element-wise product.
Another possibility, usually less efficient than bsxfun, is to repeat the arrays explicity along the desired dimensions, using repmat:
C = repmat(A, [1 1 size(B,2)]) .* repmat(shiftdim(B,-1), [size(A,1) 1 1])
For sparse matrices:
The result cannot be sparse, as sparse ND-arrays are not supported.. But you can do the computations with sparse A and B using linear indexing:
ind1 = repmat(1:numel(A),1,size(B,2));
ind2 = repmat(1:numel(B),size(A,1),1);
ind2 = ind2(:).';
C = NaN([size(A,1),size(A,2),size(B,2)]); %// preallocate with appropriate shape
C(:) = full(A(ind1).*B(ind2)); %// need to use full if C is to be 3D
Answer to your side question: the name for this operation is a hash join.

Turning a (4D matrix * 1D vector) operation into independent (3D matrix * 0D scalar) operations without loops

Is there any way to vectorize the following:
for i = 1:6
te = k(:,:,:,i).*(c(i));
end
I'm trying to multiply a 4D matrix, k, by a vector, c, by breaking it up into independent (3D matrix * scalar) operations. I already have two other unavoidable for loops within a while loop in this function file, and am trying my best to avoid loops.
Any insight on this will be much appreciated!
-SC
You can do this using MTIMESX - a Fast matrix multiplication tool with multidimensional support by James Tursa, found in Matlab's file exchange.
It is as simple as:
C = mtimesx(A,B)
performs the calculation C = A * B
Unless I'm missing something, this is a case for bsxfun:
te=bsxfun(#times, k, permute(c,[3 4 1 2])); % c is a row vector
Or
te=bsxfun(#times, k, permute(c,[3 4 2 1])); % c is a column vector
This is assuming that the 4th dimension of k has the same size as c. If not, then you can use submatrix indexing:
te=bsxfun(#times, k(:,:,:,1:length(c)), permute(c,[3 4 2 1])); % c is a column vector

Elementwise multiplication of a matrix by a vector

Suppose I have a matrix A=rand(2,14,24) and a vector x=10*ones(1,14)
I want element wise multiplication of A and x, such that B(i,j,k)=A(i,j,k)*x(j) for all j=1,2,..14.
I want to be able to do this without running a loop. What is the most efficient way to do this in matlab?
If you're multiplying A by a vector of 10's element-wise, wouldn't it be easier to simply multiply by a scalar instead?
B = A * 10;
For a general case, there is no need for repmat logic here. bsxfun can do the trick (and it's faster). :
B = bsxfun(#times, A, x);
You first use repmat to tile x the right number of times, then do element-wise multiplication.
repX = repmat(x, [size(A, 1), 1, size(A, 3)]);
B = A.*repX;

Vector to Matrix syntax in MATLAB

Is there a way to combine 2 vectors in MATLAB such that:
mat = zeros(length(C),length(S));
for j=1:length(C)
mat(j,:)=C(j)*S;
end
Using normal MATLAB syntax similar to:
mat = C * S(1:length(S))
This gives a "Inner matrix dimensions must agree error" because it's trying to do normal matrix operations. This is not a standard Linear Algebra operation so I'm not sure how to correctly express it in MATLAB, but it seems like it should be possible without requiring a loop, which is excessively slow in MATLAB.
From your description, it sounds like a simple matrix operation. You just have to make sure you have the right dimensions for C and S. C should be a column vector (length(C)-by-1) and S should be a row vector (1-by-length(S)). Assuming they are the right dimensions, just do the following:
mat = C*S;
If you're not sure of their dimensions, this should work:
mat = (C(:))*(S(:)');
EDIT: Actually, I went a little crazy with the parentheses. Some of them are unnecessary, since there are no order-of-operation concerns. Here's a cleaner version:
mat = C(:)*S(:)';
EXPLANATION:
The matrix multiplication operator in MATLAB will produce either an inner product (resulting in a scalar value) or an outer product (resulting in a matrix) depending on the dimensions of the vectors it is applied to.
The last equation above produces an outer product because of the use of the colon operator to reshape the dimensions of the vector arguments. The syntax C(:) reshapes the contents of C into a single column vector. The syntax S(:)' reshapes the contents of S into a column vector, then transposes it into a row vector. When multiplied, this results in a matrix of size (length(C)-by-length(S)).
Note: This use of the colon operator is applicable to vectors and matrices of any dimension, allowing you to reshape their contents into a single column vector (which makes some operations easier, as shown by this other SO question).
Try executing this in MATLAB:
mat = C*S'
As In:
C = [1; 2; 3];
S = [2; 2; 9; 1];
mat = zeros(length(C),length(S));
for j=1:length(C)
mat(j,:)=C(j)*S;
end
% Equivalent code:
mat2 = C*S';
myDiff = mat - mat2
Do you mean the following?
mat = zeros(length(C),length(S));
for j=1:length(C)
mat(j,:)=C(j)*S;
end
If so, it's simply matrix multiplication:
C' * S % if C and S are row vectors
C * S' % if C and S are column vectors
If you don't know whether C and S are row vectors or column vectors, you can use a trick to turn them into column vectors, then transpose S before multiplying them:
C(:) * S(:)'
I'm not entirely clear on what you're doing - it looks like your resulting matrix will consist of length(C) rows, where the ith row is the vector S scaled by the ith entry of C (since subscripting a vector gives a scalar). In this case, you can do something like
mat = repmat(C,[1 length(S)]) .* repmat(S, [length(C) 1])
where you tile C across columns, and S down rows.
Try this:
C = 1:3
S = 1:5
mat1 = C'*S
mat2 = bsxfun(#times, C',S)
(esp. good when the function you need isn't simpler MATLAB notation)
--Loren
Try using meshgrid:
[Cm, Sm] = meshgrid(C, S);
mat = Cm .* Sm;
edit: nevermind, matrix multiplication will do too. You just need one column vector C and one row vector S. Then do C * S.